ethanol removal
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 3)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Roberto Fiorenza ◽  
Roberta Agata Farina ◽  
Enrica Maria Malannata ◽  
Francesca Lo Presti ◽  
Stefano Andrea Balsamo

Solar photothermo-catalysis is a fascinating multi-catalytic approach for volatile organic compounds (VOCs) removal. In this work, we have explored the performance and the chemico-physical features of non-critical, noble, metal-free MnOx-ZrO2 mixed oxides. The structural, morphological, and optical characterizations of these materials pointed to as a low amount of ZrO2 favoured a good interaction and the ionic exchange between the Mn and the Zr ions. This favoured the redox properties of MnOx increasing the mobility of its oxygens that can participate in the VOCs oxidation through a Mars-van Krevelen mechanism. The further application of solar irradiation sped up the oxidation reactions promoting the VOCs total oxidation to CO2. The MnOx-5 wt.%ZrO2 sample showed, in the photothermo-catalytic tests, a toluene T90 (temperature of 90% of conversion) of 180 °C and an ethanol T90 conversion to CO2 of 156 °C, 36 °C, and 205 °C lower compared to the thermocatalytic tests, respectively. Finally, the same sample exhibited 84% toluene conversion and the best selectivity to CO2 in the ethanol removal after 5 h of solar irradiation at room temperature, a photoactivity similar to the most employed TiO2-based materials. The as-synthetized mixed oxide is promising for an improved sustainability in both catalyst design and environmental applications.


Chemosphere ◽  
2020 ◽  
Vol 244 ◽  
pp. 125529 ◽  
Author(s):  
Lichao Lu ◽  
Dong Dong ◽  
Zenab Tariq Baig ◽  
Marvin Yeung ◽  
Jinying Xi

2020 ◽  
Vol 16 (2) ◽  
pp. 81-90
Author(s):  
Taise B. Martins ◽  
Letícia P. Almeida ◽  
Marcel O. Cerri ◽  
Alberto C. Badino

ACS Sensors ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1058-1067 ◽  
Author(s):  
Andreas T. Güntner ◽  
Ines C. Weber ◽  
Sotiris E. Pratsinis

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 115 ◽  
Author(s):  
Anastasios Nikolaou ◽  
Georgios Sgouros ◽  
Gregoria Mitropoulou ◽  
Valentini Santarmaki ◽  
Yiannis Kourkoutas

Low alcohol wines represent a rising trend in the global market. Since for ethanol removal, certain physicochemical methods that negatively affect wine quality are applied, the aim of this present study was to evaluate the efficiency of freeze-dried, immobilized kefir culture on natural supports (apple pieces, grape skins and delignified cellulosic material) in low alcohol winemaking at various temperatures (5–30 °C). Initially, genetic analysis of kefir culture was performed by Next Generation Sequencing. There was an immobilization of kefir culture on grape skins-enhanced cell survival during freeze-drying in most cases, even when no cryoprotectant was used. Simultaneous alcoholic and malolactic fermentations were performed in repeated batch fermentations for >12 months, using freeze-dried free or immobilized cells produced with no cryoprotectant, suggesting the high operational stability of the systems. Values of great industrial interest for daily ethanol productivity and malic acid conversion [up to 39.5 g/(Ld) and 67.3%, respectively] were recorded. Principal Component Analysis (PCA) showed that freeze-drying rather than the fermentation temperature affected significantly minor volatiles. All low alcohol wines produced were accepted during the preliminary sensory evaluation.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 491 ◽  
Author(s):  
Duc-Truc Pham ◽  
Vanessa J. Stockdale ◽  
David W. Jeffery ◽  
Jonathan Tuke ◽  
Kerry L. Wilkinson

Warmer growing seasons, variations to grape ripening dynamics, and stylistic changes have contributed to increased wine alcohol levels, which can negatively impact sensory properties. As a consequence, winemakers have sought technological innovations to produce reduced alcohol wine (RAW). The sensory methodology used by industry to optimize the ethanol content of RAW is known as ‘alcohol sweetspotting’. However, to date, there is no scientific evidence to support the alcohol sweetspot phenomenon, and the sensory methodology used for alcohol sweetspotting has not been validated. In this study, different methods of presenting wine samples (i.e., ordered vs. randomized, and linear vs. circular) were employed to determine to what extent presentation order influences the outcome of alcohol sweetspotting trials. Two different approaches to statistical analysis of sensory data, i.e., chi-square goodness of fit vs. one proportion tests, were also evaluated. Statistical analyses confirmed alcohol sweetspots were apparent in some sweetspot determination trials, but outcomes were not reproducible in replicate determinations (either by panel or by individual panelists). Analysis of data using the one proportion test improved the likelihood of identifying statistically significant differences between RAWs, but variation in individuals’ sensitivity to differences in sensory properties following ethanol removal prevented validation of the alcohol sweetspot phenomenon based on the wines studied.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1404 ◽  
Author(s):  
Duc-Truc Pham ◽  
Vanessa J. Stockdale ◽  
David Wollan ◽  
David W. Jeffery ◽  
Kerry L. Wilkinson

This study investigated compositional changes in red wines resulting from wine alcohol removal by reverse osmosis-vaporative perstraction (RO-EP) and provides insight into the physical and chemical changes in reduced alcohol wine (RAW). Trial 1 involved RO-EP treatment of three wines that were analyzed pre-treatment, post-treatment, and post-treatment with alcohol adjustment (i.e., addition of ethanol to achieve the original alcohol content). Trial 2 involved partial dealcoholization of two wines and analysis of samples collected during RO-EP treatment, i.e., wine in, wine out, retentate, permeate (pre- and post-EP treatment) and strip water. Wine color was analyzed by spectrophotometric methods, while other compositional changes were determined by WineScan, high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC–MS) analyses. In general, RAWs were slightly more concentrated than pre-treatment wines, which resulted in greater color intensity and increased phenolics and organic acids. However, partial dealcoholization resulted in lower concentrations of some fermentation volatiles, particularly ethyl esters, which may reflect ester hydrolysis following ethanol removal.


2019 ◽  
Vol 12 ◽  
pp. 02020
Author(s):  
M. Petrozziello ◽  
L. Panero ◽  
M. Guaita ◽  
R. Prati ◽  
G. Marani ◽  
...  

“Beverages obtained from the partial dealcoholization of wine” are those drinks whose final alcoholic degree after dealcoholization is lower than that of a wine and higher than or equal to 0.5% v/v. When the total alcoholic degree is lower than 0.5% v/v the denomination is “Beverages obtained from the dealcoholization of wine”. The practices to be authorized for the production of these drinks with the dealcoholized wine fractions are currently being studied at OIV. The characterization of the composition of these fractions is essential to identify the necessary corrective practices. The present work was aimed at monitoring the losses of the main volatile compounds of a Chardonnay wine with the proceeding of the dealcoholization process by vacuum distillation. The wine was subjected to total dealcoholization, and during the process the evaporated fractions, re-condensed at 9 ∘C, were collected in aliquots of 1.25 L each. The ethanol content of each fraction was measured, and for the first 20 fractions the content in volatile compounds was determined with GC-MS. The results show that the losses of volatile compounds during the dealcoholization process follow different trends depending on the molecules considered. The most volatile compounds, generally with the lowest perception thresholds, were mainly present in the first evaporated fractions. The greatest losses concerned isoamylacetate, ethyl hexanoate and ethyl octanoate. Conversely, a greater number of molecules were present at similar concentrations in the different fractions, and their losses followed a linear or sometimes exponential trend: in particular, these compounds included n-hexanol, 2-phenylethanol, diethyl succinate and medium chain fatty acids (hexanoic, octanoic and decanoic acids). In the wine dealcoholized at 3.36% v/v (loss of ethanol equal to 7.43% v/v, corresponding to the 20th and last recondensed fraction), some volatile compounds were no longer detectable or quantifiable; in particular, these compounds were isoamylacetate, ethylhexanoate, hexylacetate, n-hexanol and other alcohols with 6 carbon atoms and ethyl octanoate. Other compounds, such as hexanoic, octanoic and decanoic acids, and, in particolar, β-phenylethanol, benzylic aalcohol and γ-butyrolactone, underwent lower percentage losses than those of ethanol. The dealcoholization process can therefore deeply modify the original aromatic profile of the wines, intervening on the absolute concentration and on the relative ratios of the single molecules.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 88
Author(s):  
Martina Andlar ◽  
Damir Oros ◽  
Tonči Rezić ◽  
Roland Ludwig ◽  
Božidar Šantek

A three-step process consisting of biomass hydrolysis, fermentation and in-situ gas stripping by a vacuum assisted recovery system, was optimized to increase the ethanol production from sugar beet pulp. The process combines the advantages of stripping and vacuum separation and enhances the fermentation productivity through in-situ ethanol removal. Using the design of experiment and response surface methodology, the effect of major factors in the process, such as pressure, recycling ratio and solids concentration, was tested to efficiently remove ethanol after the combined hydrolysis and fermentation step. Statistical analysis indicates that a decreased pressure rate and an increased liquid phase recycling ratio enhance the productivity and the yield of the strip-vacuum fermentation process. The results also highlight further possibilities of this process to improve integrated bioethanol production processes. According to the statistical analysis, ethanol production is strongly influenced by recycling ratio and vacuum ratio. Mathematical models that were established for description of investigated processes can be used for the optimization of the ethanol production.


Sign in / Sign up

Export Citation Format

Share Document