film properties
Recently Published Documents


TOTAL DOCUMENTS

1641
(FIVE YEARS 220)

H-INDEX

62
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Matthias Kuhl ◽  
Alex Henning ◽  
Lukas Haller ◽  
Laura Wagner ◽  
Chang-Ming Jiang ◽  
...  

Disordered and porous metal oxides are promising as earth-abundant and cost-effective alternatives to noble-metal electrocatalysts. Herein, we leverage non-saturated oxidation in plasma-enhanced atomic layer deposition to tune structural, mechanical, and optical properties of biphasic CoOx thin films, thereby tailoring their catalytic activities and chemical stabilities. To optimize the resulting film properties, we systematically vary the oxygen plasma power and exposure time in the deposition process. We find that short exposure times and low plasma powers incompletely oxidize the cobaltocene precursor to Co(OH)2 and result in the incorporation of carbon impurities. These Co(OH)2 films are highly porous and catalytically active, but their electrochemical stability is impacted by poor adhesion to the substrate. In contrast, long exposure times and high plasma powers completely oxidize the precursor to form Co3O4, reduce the carbon impurity incorporation, and improve the film crystallinity. While the resulting Co3O4 films are highly stable under electrochemical conditions, they are characterized by low oxygen evolution reaction activities. To overcome these competing properties, we applied the established relation between deposition parameters and functional film properties to design bilayer films exhibiting simultaneously improved electrochemical performance and chemical stability. The resulting biphasic films combine a highly active Co(OH)2 surface with a stable Co3O4 interface layer. In addition, these coatings exhibit minimal light absorption, thus rendering them well suited as protective catalytic layers on semiconductor light absorbers for application in photoelectrochemical devices.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 172
Author(s):  
Kai Zhao ◽  
Jingye Xie ◽  
Yudi Zhao ◽  
Dedong Han ◽  
Yi Wang ◽  
...  

Transparent electrodes are a core component for transparent electron devices, photoelectric devices, and advanced displays. In this work, we fabricate fully-transparent, highly-conductive Al-doped ZnO (AZO) films using an atomic layer deposition (ALD) system method of repeatedly stacking ZnO and Al2O3 layers. The influences of Al cycle ratio (0, 2, 3, and 4%) on optical property, conductivity, crystallinity, surface morphology, and material components of the AZO films are examined, and current conduction mechanisms of the AZO films are analyzed. We found that Al doping increases electron concentration and optical bandgap width, allowing the AZO films to excellently combine low resistivity with high transmittance. Besides, Al doping induces preferred-growth-orientation transition from (002) to (100), which improves surface property and enhances current conduction across the AZO films. Interestingly, the AZO films with an Al cycle ratio of 3% show preferable film properties. Transparent ZnO thin film transistors (TFTs) with AZO electrodes are fabricated, and the ZnO TFTs exhibit superior transparency and high performance. This work accelerates the practical application of the ALD process in fabricating transparent electrodes.


2022 ◽  
Vol 1048 ◽  
pp. 158-163
Author(s):  
Mekala Lavanya ◽  
Srirangam Sunita Ratnam ◽  
Thota Subba Rao

Ti doped Cu2O thin films were prepared at distinct Argon/Oxygen gas flow ratio of 34/1, 33/2,32/3 and 31/4 with net flow (Ar+O2) of 35 sccm by using DC magnetron sputtering system on glass substrates at room temperature. The gas mixture influence on the film properties studied by using X-ray diffraction, Field emission scanning electron microscopy and UV-Visible spectroscopy. From XRD results, it is evident that, with a decrease in oxygen content, the amplitude of (111) peak increased, peak at a 35.67o scattering angle and the films shows a simple cubic structure. The FESEM images indicated the granularity of thin films was distributed uniformly in a homogenous model and also includes especially pores and cracks. The film deposited at 31/4 showed a 98% higher transmittance in the visible region.


Author(s):  
Pratik Joshi ◽  
Parand R. Riley ◽  
Warren Denning ◽  
Shubhangi Shukla ◽  
Nayna Khosla ◽  
...  

Plasma and laser-based processing for tailoring DLC thin film properties for state-of-the-art wearable sensing applications.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
He Gao ◽  
Shijian Wang ◽  
Da Xu ◽  
Xueshen Wang ◽  
Qing Zhong ◽  
...  

As Nb films are widely used as superconducting electrodes of Josephson junctions, it is important to investigate the properties of Nb films in order to fabricate high-quality Josephson junctions. In this work, we conducted a comprehensive analysis of the relationships among the properties of DC magnetron sputtered Nb films with a constant power fabricated at the National Institute of Metrology (China). The film properties, including superconductivity, stress, lattice constant, and surface roughness, were investigated. It was found that in the case of constant power and Ar pressure, the stress and other parameters of the Nb films can maintain a relatively stable state during the continuous consumption of the target material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3463
Author(s):  
Mohammad Aminul Islam ◽  
Hamidreza Mohafez ◽  
Khan Sobayel ◽  
Sharifah Fatmadiana Wan Muhamad Hatta ◽  
Abul Kalam Mahmud Hasan ◽  
...  

Perovskite solar cells (PSCs) have already achieved efficiencies of over 25%; however, their instability and degradation in the operational environment have prevented them from becoming commercially viable. Understanding the degradation mechanism, as well as improving the fabrication technique for achieving high-quality perovskite films, is crucial to overcoming these shortcomings. In this study, we investigated details in the changes of physical properties associated with the degradation and/or decomposition of perovskite films and solar cells using XRD, FESEM, EDX, UV-Vis, Hall-effect, and current-voltage (I-V) measurement techniques. The dissociation, as well as the intensity of perovskite peaks, have been observed as an impact of film degradation by humidity. The decomposition rate of perovskite film has been estimated from the structural and optical changes. The performance degradation of novel planner structure PSCs has been investigated in detail. The PSCs were fabricated in-room ambient using candle soot carbon and screen-printed Ag electrode. It was found that until the perovskite film decomposed by 30%, the film properties and cell efficiency remained stable.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8385
Author(s):  
Guzel Ziyatdinova ◽  
Ekaterina Guss ◽  
Elvira Yakupova

The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds’ analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4399
Author(s):  
Arezou Khezerlou ◽  
Milad Tavassoli ◽  
Mahmood Alizadeh Sani ◽  
Keyhan Mohammadi ◽  
Ali Ehsani ◽  
...  

There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy. This article reviews the different kinds of nanocarriers available for loading active compounds into these types of packaging materials and then discusses their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of the packaging materials. Furthermore, it highlights the different kinds of bioactive compounds that can be incorporated into biopolymer-based packaging.


Sign in / Sign up

Export Citation Format

Share Document