satellite line
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 401
Author(s):  
Mokhamad Nur Cahyadi ◽  
Buldan Muslim ◽  
Danar Guruh Pratomo ◽  
Ira Mutiara Anjasmara ◽  
Deasy Arisa ◽  
...  

The study of ionospheric disturbances associated with the two large strike-slip earthquakes in Indonesia was investigated, which are West Sumatra on 2 March 2016 (Mw = 7.8), and Palu on 28 September 2018 (Mw = 7.5). The anomalies were observed by measuring co-seismic ionospheric disturbances (CIDs) using the Global Navigation Satellite System (GNSS). The results show positive and negative CIDs polarization changes for the 2016 West Sumatra earthquake, depending on the position of the satellite line-of-sight, while the 2018 Palu earthquake shows negative changes only due to differences in co-seismic vertical crustal displacement. The 2016 West Sumatra earthquake caused uplift and subsidence, while the 2018 Palu earthquake was dominated by subsidence. TEC anomalies occurred about 10 to 15 min after the two earthquakes with amplitude of 2.9 TECU and 0.4 TECU, respectively. The TEC anomaly amplitude was also affected by the magnitude of the earthquake moment. The disturbance signal propagated with a velocity of ~1–1.72 km s−1 for the 2016 West Sumatra earthquake and ~0.97–1.08 km s−1 for the 2018 Palu mainshock earthquake, which are consistent with acoustic waves. The wave also caused an oscillation signal of ∼4 mHz, and their azimuthal asymmetry of propagation confirmed the phenomena in the Southern Hemisphere. The CID signal could be identified at a distance of around 400–1500 km from the epicenter in the southwestern direction.


Author(s):  
L. C. Mabaquiao

Abstract. The city of Metro Manila has been constantly battered by several hazards on an annual basis. On January 2020, the Taal Volcano erupted with multiple recorded earthquakes. Previous literatures have found that Metro Manila is experiencing a steady subsidence. Determination of land uplift or subsidence is crucial in planning and mitigating the effects of flooding in the area. The study aims to determine whether an uplift occurred in Metro Manila after the eruption or is the study area still experiencing subsidence This study uses a pair L1 SLC Sentinel 1 Images. Radar Interferometry is used to generate Interferograms and Satellite Line of Sight (LOS) deformation was determined between the 2 dates of image acquisition. It was found that the Metro Manila area generally experienced an uplift except for some areas in Caloocan which shows subsidence. The uplift magnitude gradually decreases going from the South to North with a max value of 9.6 cm.


2021 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Takuya Kobayashi ◽  
Fumitaka Nishiyama ◽  
Katsumi Takahiro

The color of a thin copper oxide layer formed on a copper plate was transformed from reddish-brown into dark blue-purple by irradiation with 5 keV Ar+ ions to a fluence as low as 1 × 1015 Ar+ cm−2. In the unirradiated copper oxide layer, the copper valence state of Cu2+ and Cu+ and/or Cu0 was included as indicated by the presence of a shake-up satellite line in a photoemission spectrum. While for the irradiated one, the satellite line decreased in intensity, indicating that irradiation resulted in the reduction from Cu2+ to Cu+ and/or Cu0. Furthermore, nuclear reaction analysis using a 16O(d, p)17O reaction with 0.85 MeV deuterons revealed a significant loss of oxygen (5 × 1015 O atoms cm−2) in the irradiated layer. Thus, the chromatic change observed in the present work originated in the irradiation-induced reduction of a copper oxide.


Author(s):  
Takuya Kobayashi ◽  
Fumitaka Nishiyama ◽  
Katsumi Takahiro

The color of a thin copper oxide layer formed on a copper plate was transformed from reddish-brown into blue-purple by irradiation with 5 keV Ar+ ions to a fluence as low as 1 1015 Ar+ cm–2. In the unirradiated copper oxide layer, the copper valence state of Cu2+ as well as Cu+ and/or Cu0 was included as indicated by the presence of a shake-up satellite line in a photoemission spectrum. While for the irradiated one, the satellite line decreased in intensity, indicating that irradiation resulted in the reduction from Cu2+ to Cu+ and/or Cu0. Furthermore, nuclear reaction analysis using a 16O(d, p)17O reaction with 0.85 MeV deuterons revealed a significant loss of oxygen (51015 O atoms cm–2) in the irradiated layer. Thus, the chromatic change observed in the present work originated in the irradiation-induced reduction of a copper oxide.


2020 ◽  
Vol 497 (4) ◽  
pp. 4066-4076
Author(s):  
Anita Petzler ◽  
J R Dawson ◽  
Mark Wardle

ABSTRACT Observations of the four 2Π3/2,  J = 3/2 ground state transitions of the hydroxyl radical (OH) have emerged as an informative tracer of molecular gas in the Galactic interstellar medium (ISM). We discuss an OH spectral feature known as the ‘flip’, in which the satellite lines at 1612 and 1720 MHz flip – one from emission to absorption and the other the reverse – across a closely blended double feature. We highlight 30 examples of the flip from the literature, 27 of which exhibit the same orientation with respect to velocity: the 1720-MHz line is seen in emission at more negative velocities. These same examples are also observed towards bright background continuum, many (perhaps all) show stimulated emission, and 23 of these are coincident in on-sky position and velocity with H ii radio recombination lines. To explain these remarkable correlations, we propose that the 1720-MHz stimulated emission originates in heated and compressed post-shock gas expanding away from a central H ii region, which collides with cooler and more diffuse gas hosting the 1612-MHz stimulated emission. The foreground gas dominates the spectrum due to the bright central continuum; hence, the expanding post-shock gas is blue-shifted relative to the stationary pre-shock gas. We employ non-local thermodynamic equilibrium (LTE) excitation modelling to examine this scenario and find that indeed FIR emission from warm dust adjacent to the H ii region radiatively pumps the 1612-MHz line in the diffuse, cool gas ahead of the expanding shock front, while collisional pumping in the warm, dense shocked gas inverts the 1720-MHz line.


2019 ◽  
Vol 75 (3) ◽  
pp. 527-540 ◽  
Author(s):  
Hamish A. Melia ◽  
Christopher T. Chantler ◽  
Lucas F. Smale ◽  
Alexis J. Illig

A characterization of the Cu Kα1,2 spectrum is presented, including the 2p satellite line, Kα3,4, the details of which are robust enough to be transferable to other experiments. This is a step in the renewed attempts to resolve inconsistencies in characteristic X-ray spectra between theory, experiment and alternative experimental geometries. The spectrum was measured using a rotating anode, monolithic Si channel-cut double-crystal monochromator and backgammon detector. Three alternative approaches fitted five Voigt profiles to the data: a residual analysis approach; a peak-by-peak fit; and a simultaneous constrained method. The robustness of the fit is displayed across three spectra obtained with different instrumental broadening. Spectra were not well fitted by transfer of any of three prior characterizations from the literature. Integrated intensities, line widths and centroids are compared with previous empirical fits. The novel experimental setup provides insight into the portability of spectral characterizations of X-ray spectra. From the parameterization, an estimated 3d shake probability of 18% and a 2p shake probability of 0.5% are reported.


2017 ◽  
Vol 32 (2) ◽  
pp. 385-392 ◽  
Author(s):  
A. Sepúlveda ◽  
T. Rodríguez ◽  
P. D. Pérez ◽  
A. P. L. Bertol ◽  
A. C. Carreras ◽  
...  
Keyword(s):  

Diagram and satellite line parameters were obtained from Fe-L and Ni-L X-ray spectra induced by electron impact.


Author(s):  
I. Hlaváčová ◽  
L. Halounová ◽  
P. Stanislav

The mining area previously monitored by TerraSAR-X InSAR is now monitored by Sentinel-1 InSAR. Although the processing of the IWS (TOPS) mode requires additional processing steps and the coregistration has to be performed with the precision of 0.001 pixel (in the azimuth direction), if an area within one burst is processed, such a precise coregistration is not necessary. Information from 11 corner reflectors is evaluated, and significant movements at one of them were detected. Although it seems to be uplift, it is more probable that the movement is in down-the-slope direction, which has a negative sensitivity with regard to the satellite line of sight. The movement is similar to the one detected by TerraSAR-X satellite in the past. At the end of the monitoring period, the movement seems to settle down; future monitoring will show more about the dynamicity of the movement.


Author(s):  
I. Hlaváčová ◽  
L. Halounová ◽  
P. Stanislav

The mining area previously monitored by TerraSAR-X InSAR is now monitored by Sentinel-1 InSAR. Although the processing of the IWS (TOPS) mode requires additional processing steps and the coregistration has to be performed with the precision of 0.001 pixel (in the azimuth direction), if an area within one burst is processed, such a precise coregistration is not necessary. Information from 11 corner reflectors is evaluated, and significant movements at one of them were detected. Although it seems to be uplift, it is more probable that the movement is in down-the-slope direction, which has a negative sensitivity with regard to the satellite line of sight. The movement is similar to the one detected by TerraSAR-X satellite in the past. At the end of the monitoring period, the movement seems to settle down; future monitoring will show more about the dynamicity of the movement.


Sign in / Sign up

Export Citation Format

Share Document