argon gas
Recently Published Documents


TOTAL DOCUMENTS

728
(FIVE YEARS 109)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Hanmant Virbhadra Shete ◽  
Sanket Dattatraya Gite

Gas metal arc welding (GMAW) is the leading process in the development of arc welding process for higher productivity and quality. In this study, the effect of process parameters of argon gas welding on the strength of T type welded joint of AISI 310 stainless steel is analyzed. The Taguchi technique is used to develop the experimental matrix and tensile strength of the welded joint is measured using experimental method and finite element method. Optimization of input parameter is performed for the maximum tensile strength of welded joint using ANOVA. The results showed that welding speed is the most significant factor affecting the tensile strength followed by voltage in argon gas metal arc welding (AGMAW) process. Argon gas welding process performance with regard to the tensile strength is optimized at voltage: 18.5 V, wire feed speed: 63 m/min and welding speed: 0.36 m/min.


Author(s):  
Mykhailo Chundak ◽  
Claude Poleunis ◽  
Vincent Delmez ◽  
Alain M. Jonas ◽  
Arnaud Delcorte

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1943
Author(s):  
Jian-Qiu Liu ◽  
Jian Yang ◽  
Chao Ma ◽  
Yi Guo ◽  
Wen-Yuan He ◽  
...  

In this paper, the effects of the width of the mold on the surface velocity, flow field pattern, turbulent kinetic energy distribution, and surface-level fluctuation in the mold were studied with measurement of the flow velocity near the surface of the mold at high temperature with the rod deflection method and numerical calculation with the standard k-ε model coupled with the discrete-phase model (DPM) model for automobile exposed panel production. Under the conditions of low fixed steel throughput of 2.2 ton/min, a nozzle immersion depth of 140 mm, and an argon gas flow rate of 4 L/min, as the width of the mold increases from 880 mm to 1050 mm and 1300 mm, the flow velocity near the surface of the mold decreases. The flow direction changes from the positive velocity with the mold widths of 880 mm and 1050 mm to the unstable velocity with the mold width of 1300 mm. The calculated results are in good agreement with the measured results. The turbulent kinetic energy near the submerged entry nozzle (SEN) gradually increases, and the risk of slag entrainment increases. Under the conditions of high fixed steel throughput of 3.5 ton/min, the SEN immersion depth of 160 mm, and the argon gas flow rate of 10 L/min, as the width of the mold increases from 1600 mm to 1800 mm and 2000 mm, the velocity near the mold surface decreases. The flow velocity at 1/4 of the surface of the mold is positive with the mold width of 1600 mm, while the velocities are negative with the widths of 1800 mm and 2000 mm. The calculated results are basically consistent with the measured results. The high turbulent kinetic energy area near the nozzle expands to a narrow wall, and the risk of slag entrainment is significantly increased. In both cases of low and high fixed steel throughput, the change rules of the flow field in the mold with the width are basically the same. The argon gas flow rate and the immersion depth of SEN should be adjusted reasonably to optimize the flow field in the mold with different widths under the same fixed steel throughput in the practical production.


2021 ◽  
Vol 16 (11) ◽  
pp. P11022
Author(s):  
Y. Pezeshkian ◽  
A. Kiyoumarsioskouei ◽  
M. Ahmadpouri ◽  
G. Ghorbani

Abstract A prototype of a single-gap glass Resistive Plate Chamber (RPC) is constructed by the authors. To find the requirements for better operation of the detector's gas system, we have simulated the flow of the Argon gas through the detector by using computational fluid dynamic methods. Simulations show that the pressure inside the chamber linearly depends on the gas flow rate and the chamber's output hose length. The simulation results were compatible with experiments. We have found that the pressure-driven speed of the gas molecules is two orders of magnitude larger in the inlet and outlet regions than the blocked corners of a 14 × 14 cm2 chamber, and most likely the difference in speed is higher for larger detectors and different geometries.


10.6036/10206 ◽  
2021 ◽  
Vol DYNA-ACELERADO (0) ◽  
pp. [ 8 pp.]-[ 8 pp.]
Author(s):  
Antonio Urióstegui Hernández ◽  
PEDRO GARNICA GONZALEZ ◽  
CONSTANTIN ALBERTO HERNANDEZ BOCANEGRA ◽  
JOSE ANGEL RAMOS BANDERAS ◽  
JOSE JULIAN MONTES RODRIGUEZ ◽  
...  

In this work fluid dynamics and a basic study of the sulfur transfer at the steel/slag interface in the ladle during argon gas agitation was developed. Mass transfer and chemical reaction models coupled with Computational Fluid Dynamics (CFD) were employed. The multiphasic simulation was solved using the Eulerian model considering drag and non-drag forces, and the flow pattern was validated through Particle Image Velocimetry (PIV) technique. The sulfur transfer rate was tracked by two approximations: (1) unidirectional constant rate Mass Transfer Model (MTM), and (2) unidirectional constant rate Mass Transfer Model coupled with Chemical Reaction Model (MTM+CRM) using Arrhenius equation. It was found that including the non-drag forces affects the fluid dynamics structure. Otherwise, the desulfurization rates increase as the argon gas flow rate increases, finding that the MTM model predicts ~15% less sulfur in the steel than the MTM+CRM, whose results were compared with plant measurements reports.


Author(s):  
N. A. Kochetov ◽  
A. S. Rogachev ◽  
I. D. Kovalev ◽  
S. G. Vadchenko
Keyword(s):  

2021 ◽  
Author(s):  
Quan Wang ◽  
Xiaomeng Xu ◽  
Weida Chang ◽  
Zhimin Li ◽  
Jun Zhang ◽  
...  

Abstract To explore the inhibitory effect of argon gas and explosion-eliminating chamber on methane-air deflagration flame propagation in the tube, based on the Φ=120 mm, L=5.5 m stainless steel pipeline test system to measure methane-air deflagration flame structure, flame propagation speed, and deflagration pressure. The results show that: 10%~30% argon is mixed into the methane-air premixed gas with different equivalent ratios. With the increase in the mixed argon content, the tensile distortion and instability of the flame front increase, and the average value of flame propagation speed decreases by 2.52%~60.0%. The first and second deflagration pressure peaks are reduced by about 13.1%~62% and 17.7%~86.5% respectively. The average value of the methane-air deflagration flame propagation velocity was reduced by 5.7%~37.0% with the explosion-eliminating chamber laid at the nozzle. The second and third deflagration pressure peaks are reduced by about 10%~30% and 50%~90% respectively. The inhibitory effect of argon on the propagation of methane-air flame is considered better than the laying of the explosion-eliminating chamber under the experimental conditions.


2021 ◽  
Vol 244 ◽  
pp. 114510
Author(s):  
Matthew Hodgson ◽  
Sumit Roy ◽  
Anthony Paul Roskilly ◽  
Andrew Smallbone

Sign in / Sign up

Export Citation Format

Share Document