high affinity binding
Recently Published Documents


TOTAL DOCUMENTS

1224
(FIVE YEARS 48)

H-INDEX

104
(FIVE YEARS 5)

2021 ◽  
pp. 101392
Author(s):  
Erik J.B. Landin ◽  
Christopher Williams ◽  
Sara A. Ryan ◽  
Alice Bochel ◽  
Nahida Akter ◽  
...  

2021 ◽  
Author(s):  
Jakub Chrustowicz ◽  
Dawafuti Sherpa ◽  
Joan Teyra ◽  
Mun Siong Loke ◽  
Grzegorz Popowicz ◽  
...  

N-degron E3 ubiquitin ligases recognize specific residues at the N-termini of substrates. Although molecular details of N-degron recognition are known for several E3 ligases, the range of N-terminal motifs that can bind a given E3 substrate binding domain remains unclear. Here, studying the Gid4 and Gid10 substrate receptor subunits of yeast GID/human CTLH multiprotein E3 ligases, whose known substrates bear N-terminal prolines, we discovered capacity for high-affinity binding to diverse N-terminal sequences determined in part by context. Screening of phage displaying peptide libraries with exposed N-termini identified novel consensus motifs with non-Pro N-terminal residues distinctly binding Gid4 or Gid10 with high affinity. Structural data reveal that flexible loops in Gid4 and Gid10 conform to complementary folds of diverse interacting peptide sequences. Together with analysis of endogenous substrate degrons, the data show that degron identity, substrate domains harboring targeted lysines, and varying E3 ligase higher-order assemblies combinatorially determine efficiency of ubiquitylation and degradation.


Metallomics ◽  
2021 ◽  
Author(s):  
Afsana Mahim ◽  
Mohammad Mahim ◽  
David H Petering

Abstract The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that non-specific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione. In agreement, inclusion of glutathione accelerated the reaction in a concentration-dependent manner. The implications of abundant high affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with glutathione in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.


2021 ◽  
Vol 2 (2) ◽  
pp. 629-642
Author(s):  
Lilia Milanesi ◽  
Clare R. Trevitt ◽  
Brian Whitehead ◽  
Andrea M. Hounslow ◽  
Salvador Tomas ◽  
...  

Abstract. Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (Kd∼300 nM) saturates with a 2:1 idoxifene:CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2:1 idoxifene:CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics.


Peptides ◽  
2021 ◽  
pp. 170628
Author(s):  
Surendra S. Negi ◽  
Randall M. Goldblum ◽  
Werner Braun ◽  
Terumi Midoro-Horiuti

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aleksandra Białas ◽  
Thorsten Langner ◽  
Adeline Harant ◽  
Mauricio P Contreras ◽  
Clare EM Stevenson ◽  
...  

A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.


2021 ◽  
pp. ji2100030
Author(s):  
Rina Iwase ◽  
Naoto Naruse ◽  
Miho Nakagawa ◽  
Risa Saito ◽  
Akira Shigenaga ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7515
Author(s):  
Jonathan M. Nelson ◽  
Cecil J. Saunders ◽  
Erik C. Johnson

All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.


2021 ◽  
Author(s):  
Edem K. Onyameh ◽  
Edward Ofori ◽  
Barbara A. Bricker ◽  
Uma M. Gonela ◽  
Suresh V. K. Eyunni ◽  
...  

Abstract Compound 1c, 2-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)-5-fluoro-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized a methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compound 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity and a β-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed 22 times less activity than 5-HT in the Gs pathway, it showed 28 times higher activity than 5-HT in the β-arrestin pathway. This constitutes a significant β-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published β-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).


Sign in / Sign up

Export Citation Format

Share Document