acute radiation syndrome
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 83)

H-INDEX

27
(FIVE YEARS 6)

Author(s):  
Leif Stenke ◽  
Christel Hedman ◽  
Marita Lagergren Lindberg ◽  
Karin Lindberg ◽  
Jack Valentin

Abstract The major immediate and severe medical consequences in man following exposure to high doses of ionizing radiation can be summarized within the concept of the acute radiation syndrome (ARS). In a dose-dependent fashion, a multitude of organ systems can be affected by such irradiation, presenting considerable medical challenges to treating physicians. Accidents or malevolent events leading to ARS can provoke devastating effects, but they occur at a low frequency and in a highly varying manner and magnitude. Thus, it is difficult to make precise medical predictions and planning, or to draw conclusive evidence from occurred events. Therefore, knowledge from on-going continuous developments within related medical areas needs to be acknowledged and incorporated into the ARS setting, enabling the creation of evidence-based guidelines. In 2011 the WHO published a first global consensus on the medical management of ARS among patients subjected to nontherapeutic radiation. During the recent decade the understanding of and capability to counteract organ damage related to radiation and other agents have improved considerably. Furthermore, legal and logistic hurdles in the process of formally approving appropriate medical countermeasures have been reduced. We believe the time is now ripe for developing an update of internationally consented medical guidelines on ARS.


Author(s):  
Laurence Lebaron-Jacobs ◽  
Eduardo Daniel Herrera Reyes

Abstract The Medical management of radiation accidents manual on the acute radiation syndrome (METREPOL) proposed a successful strategic approach to diagnosing and treating acute radiation syndrome: the response category concept. Based on clinical and laboratory parameters, this approach aimed to assess damage to critical organ systems as a function of time, categorising different therapeutical approaches. After 20 years of its publication, the following paper attempts to provide a broad overview of this important document and tries to respond if proposed criteria are still relevant for the medical management of radiation-induced injuries. In addition, a critical analysis of its limitations and perspectives is proposed.


2021 ◽  
Author(s):  
Andrea R. Daniel ◽  
Lixia Luo ◽  
Chang-Lung Lee ◽  
David G. Kirsch

Exposure to high dose radiation causes life-threatening acute and delayed effects. Defining the mechanisms of lethal radiation-induced acute toxicity of gastrointestinal and hematopoietic tissues are critical steps to identify drug targets to mitigate and protect against the acute radiation syndrome (ARS). For example, one rational approach would be to design pharmaceuticals that block cell death pathways to preserve tissue integrity in radiation-sensitive organ systems including the gastrointestinal tract and hematopoietic compartment. A previous study reported that the inflammasome pathway, which mediates inflammatory cell death through pyroptosis, promotes ARS. However, we show that mice lacking the inflammatory executioner caspases, caspase-1 and caspase-11, are not protected from ARS when compared directly to littermates expressing caspase-1 and caspase-11. These results suggest that alternative pathways will need to be targeted by drugs that successfully mitigate and protect against the ARS.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Craig M. Brackett ◽  
Kellee F. Greene ◽  
Alyssa R. Aldrich ◽  
Nicholas H. Trageser ◽  
Srabani Pal ◽  
...  

AbstractAcute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.


Author(s):  
Vijay K. Singh ◽  
Oluseyi O. Fatanmi ◽  
Stephen Y. Wise ◽  
Alana Carpenter ◽  
Sara Nakamura-Peek ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256208
Author(s):  
W. Bradley Rittase ◽  
Elizabeth A. McCart ◽  
Jeannie M. Muir ◽  
Roxane M. Bouten ◽  
John E. Slaven ◽  
...  

Our laboratory has demonstrated that captopril, an angiotensin converting enzyme inhibitor, mitigates hematopoietic injury following total body irradiation in mice. Improved survival in mice is correlated with improved recovery of mature blood cells and bone marrow, reduction of radiation-induced inflammation, and suppression of radiation coagulopathy. Here we investigated the effects of captopril treatment against radiation injuries in the Göttingen mini pig model of Hematopoietic-Acute Radiation Syndrome (H-ARS). Minipigs were given captopril orally (0.96 mg/kg) twice daily for 12 days following total body irradiation (60Co 1.79 Gy, 0.42–0.48 Gy/min). Blood was drawn over a time course following irradiation, and tissue samples were collected at euthanasia (32–35 days post-irradiation). We observed improved survival with captopril treatment, with survival rates of 62.5% in vehicle treated and 87.5% in captopril treated group. Additionally, captopril significantly improved recovery of peripheral blood mononuclear cells, and a trend toward improvement in recovery of red blood cells and platelets. Captopril significantly reduced radiation-induced expression of cytokines erythropoietin and granulocyte-macrophage colony-stimulating factor and suppressed radiation-induced acute-phase inflammatory response cytokine serum amyloid protein A. Using quantitative-RT-PCR to monitor bone marrow recovery, we observed significant suppression of radiation-induced expression of redox stress genes and improved hematopoietic cytokine expression. Our findings suggest that captopril activities in the Göttingen minipig model of hematopoietic-acute radiation syndrome reflect findings in the murine model.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew H. Forsberg ◽  
John A. Kink ◽  
Anna S. Thickens ◽  
Bryson M. Lewis ◽  
Charlie J. Childs ◽  
...  

Abstract Background Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. Methods Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. Results LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. Conclusion LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document