induce cell death
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 68)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
pp. 114913
Author(s):  
Zirui Lü ◽  
Xiaona Li ◽  
Kebin Li ◽  
Paola Ripani ◽  
Xiaomeng Shi ◽  
...  

Author(s):  
R. Rajasekaran ◽  
P. K. Suresh

Seeds have been known to possess bioactive components with anti-cancer properties. This study aims to demonstrate the processes by which seed extracts from various sources induce cell death. Several assays have been employed to demonstrate the induction of cell death by the respective seed extracts. This review also underscores the importance of Grape Seed Proanthocyanidins (GSPs) in terms of inducing the aforesaid physiological form of seed extract-induced cell death. Furthermore, this review highlights the critical and pressing need to conduct comparative HTS-based strategies (with a battery of cell lines representing different cancers) to identify the major seed extracts that can reproducibly serve to augment the cell death induction capabilities of the existing battery of chemotherapeutic drugs/natural alternatives.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yaru Li ◽  
Yilong Zhu ◽  
Jicheng Han ◽  
Jinbo Fang ◽  
Zhiru Xiu ◽  
...  

Ad-VT (Ad-Apoptin-hTERTp-E1a) is a type of oncolytic adenovirus with dual specific tumor cell death ability. It can effectively induce cell death of breast cancer cells and has better effect when used in combination with chemotherapy drugs. However, it has not been reported whether Ad-VT reduces the resistance of breast cancer cells to chemotherapy drugs. The purpose of this study is to investigate the effect of Ad-VT on drug resistance of Adriamycin-resistant breast cancer cells. For this, the effects of different doses of Ad-VT on the resistance of breast cancer cells to Adriamycin were analyzed using qualitative and quantitative experiments in vitro and in vivo. The Ad-VT can reduce the resistance of MCF-7/ADR to adriamycin, which is caused by the reduction of MRP1 protein level in MCF-7/ADR cells after treatment with Ad-VT, and MRP1 can be interfered with by autophagy inhibitors. Subsequently, the upstream signal of autophagy was analyzed and it was found that Ad-VT reduced the resistance of cells to doxorubicin by reducing the level of mTOR, and then the analysis of the upstream and downstream proteins of mTOR found that Ad-VT increased the sensitivity of MCF-7/ADR cells to adriamycin by activating AMPK-mTOR-eIF4F signaling axis. Ad-VT can not only significantly induce cell death in MCF-7/ADR cells, but also improved their sensitivity to Adriamycin. Therefore, the combination of Ad-VT and chemotherapy drugs may become a new strategy for the treatment of breast cancer in overcoming Adriamycin resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadiah Abu ◽  
Nurul Ainaa Adilah Rus Bakarurraini ◽  
Siti Nurmi Nasir

Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.


Nature ◽  
2021 ◽  
Author(s):  
Kevin A. Guttenplan ◽  
Maya K. Weigel ◽  
Priya Prakash ◽  
Prageeth R. Wijewardhane ◽  
Philip Hasel ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiangbing Meng ◽  
Jason Z. Gao ◽  
Sean Michael T. Gomendoza ◽  
John W. Li ◽  
Shujie Yang

p53 is among the most frequently mutated tumor suppressor genes given its prevalence in >50% of all human cancers. One critical tumor suppression function of p53 is to regulate transcription of downstream genes and maintain genomic stability by inducing the G1/S checkpoint in response to DNA damage. Tumor cells lacking functional p53 are defective in the G1/S checkpoint and become highly dependent on the G2/M checkpoint to maintain genomic stability and are consequently vulnerable to Wee1 inhibitors, which override the cell cycle G2/M checkpoint and induce cell death through mitotic catastrophe. In addition to the lost tumor suppression function, many mutated p53 (Mutp53) proteins acquire gain-of-function (GOF) activities as oncogenes to promote cancer progression, which manifest through aberrant expression of p53. In cancer cells with GOF Mutp53, statins can induce CHIP-mediated degradation of Mutp53 within the mevalonate pathway by blocking the interaction between mutp53 and DNAJA1. Therefore, targeting critical downstream pathways of Mutp53 provides an alternative strategy for treating cancers expressing Mutp53. In this review, we summarize recent advances with Wee1 inhibitors, statins, and mevalonate pathway inhibitors in cancers with p53 mutations.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Carine Racca ◽  
Sébastien Britton ◽  
Sabrine Hédouin ◽  
Claire Francastel ◽  
Patrick Calsou ◽  
...  

AbstractCentromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.


2021 ◽  
Author(s):  
Bayantes Dagvadorj ◽  
Megan A. Outram ◽  
Simon J. Williams ◽  
Peter S. Solomon

SummaryThe plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast-two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in-planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus was localized in the cytoplasm. Further analyses using yeast-two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D, which was unable to interact with TaNHL10 in yeast-two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlights the importance of host cell surface interactions in necrotrophic pathosystems.


2021 ◽  
Author(s):  
Yangci Liu ◽  
Haoming Zhai ◽  
Helen Alemayehu ◽  
Lee J Hopkins ◽  
Alicia C Borgeaud ◽  
...  

Inflammasomes induce cell death in response to infection, chemical entities and cell damage. Human genetics and animal models have identified the NLRP3 inflammasome as a gatekeeper of caspase-1-dependent pyroptosis. NLRP3 activation induces polymerization of ASC into a single, micron-scale perinuclear punctum, where caspase-1 is activated. These puncta have yet to be imaged at sufficient resolution to resolve their ultrastructure. Here, we apply correlative cryo-light microscopy and cryo-electron tomography to visualize ASC/caspase-1 puncta and mitochondrial membrane remodelling within NLRP3-activated cells. The puncta are composed primarily of branched ASC filaments. The N-terminal pyrin domain forms an 8-10 nm-diameter tubular core, which is decorated by the flexibly linked C-terminal caspase recruitment domain. The variable filament density allows ribosomes and trans-Golgi-like vesicles to permeate the network. We propose this provides structural integrity while allowing macromolecules and vesicles to diffuse in or bind with the necessary density, timing and localization.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


Sign in / Sign up

Export Citation Format

Share Document