magnesium titanate
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Igor P. Vorona ◽  
Valentyna Nosenko ◽  
Sergii M. Okulov ◽  
Dariya Savchenko ◽  
Taras Petrenko ◽  
...  

Abstract Manganese-doped magnesium titanate ceramic samples obtained by a solid-state reaction via sintering in the air from a mixture of MgO and TiO2 powders of different molar ratios were analyzed by electron paramagnetic resonance (EPR) technique. The EPR signals of Mn2+ ions (S = 5/2, І = 5/2) in crystal phases of MgO, Mg2TiO4, and MgTiO3 were detected. We have obtained the following spin Hamiltonian parameters for Mn2+ ions: g = 2.0015, A ~ 81 ∗ 10-4 cm-1 (in MgO phase); g = 2.0029, A ~ 73.8 ∗ 10-4 cm-1, b2 0 = 35 ∗ 10-4 cm-1 (in Mg2TiO4 phase); g = 2.004, A ~ 79 ∗ 10-4 cm-1, b2 0 = 165 ∗ 10-4 cm-1 (in MgTiO3 phase). Despite the presence of Mn4+ centers in both Mg2TiO4:Mn and MgTiO3:Mn ceramics confirmed by previous optical studies, no EPR signals related to Mn4+ ions (S = 3/2, І = 5/2) were found. The Mn2+ EPR signals are proposed as structural probes in manganese-doped magnesium titanate ceramics.


2021 ◽  
pp. 22-22
Author(s):  
Natasa Djordjevic ◽  
Milica Vlahovic ◽  
Sanja Martinovic ◽  
Slavica Mihajlovic ◽  
Nenad Vusovic ◽  
...  

In this study, a mixture of magnesium oxide and titanium dioxide was mechanically activated in order to investigate the possibility of mechanochemical synthesis of magnesium titanate. Mechanical activation was performed for 1000 min in a high-energy vibro mill (type MH954/3, KHD Humboldt Wedag AG, Germany). The mill is equipped with housing having a horizontally placed shutter. The cylindrical stainless steel working vessel, with inner dimensions of 40 mm in height and 170 mm in diameter, has working elements consisting of two free concentric stainless steel rings with a total weight of 3 kg. The engine power is 0.8 kW. Respecting the optimal amount of powder to be activated of 50-150 g and the stoichiometric ratio of the reactants in the equation presenting the chemical reaction of magnesium titanate synthesis, the starting amounts were 20.2 g (0.5 mol) of MgO and 39.9 g (0.5 mol) TiO2. During the experiments, X-ray diffraction analysis of the samples taken from the reaction system after 60, 180, 330, and 1000 min of mechanical activation was performed. Atomic absorption spectrophotometry was used for chemical composition analysis of samples taken at different activation times. Based on the X-ray diffraction analysis results, it can be concluded that the greatest changes in the system took place at the very beginning of the mechanical activation due to the disturbance of the crystal structure of the initial components. X-ray diffraction analysis of the sample after 1000 min of activation showed complete amorphization of the mixture, but diffraction maxima characteristic for magnesium titanate were not identified. Therefore, the mechanical activation experiments were stopped. Evidently, the energy input was not sufficient to overcome the energy barrier to form a new chemical compound - magnesium titanate. The failure to synthesize magnesium titanate is explained by the low negative Gibbs energy value of -25.8 kJ/mol (despite the theoretical possibility that the reaction will happen), as well as by the amount of mechanical energy entered into the system during activation which was insufficient to obtain the reaction product. Although the synthesis of MgTiO3 was not achieved, significant results were obtained which identify models for further investigations of the possibility of mechanochemical reactions of alkaline earth metals and titanium dioxide.


2020 ◽  
Vol 46 (18) ◽  
pp. 28987-28995
Author(s):  
Qianqian Chen ◽  
Chonglai Jiang ◽  
Panpan Lin ◽  
Wumo Du ◽  
Jincheng Lin ◽  
...  

2019 ◽  
Vol 39 (15) ◽  
pp. 4901-4910 ◽  
Author(s):  
Chonglai Jiang ◽  
Panpan Lin ◽  
Qianqian Chen ◽  
Ce Wang ◽  
Tiesong Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document