nitrate uptake
Recently Published Documents


TOTAL DOCUMENTS

815
(FIVE YEARS 82)

H-INDEX

65
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Sonali Roy ◽  
Marcus Griffiths ◽  
Ivone Torres-Jerez ◽  
Bailey Sanchez ◽  
Elizabeth Antonelli ◽  
...  

The root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. The uptake of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) from the soil is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization. Here we describe a high throughput phenotyping platform for testing SSP effects on root uptake of multiple nutrients. The SSP, CEP1 (C-TERMINALLY ENCODED PEPTIDE) enhanced nitrate uptake rate per unit root length in Medicago truncatula plants deprived of N in the high-affinity transport range. Single structural variants of M. truncatula and Arabidopsis thaliana specific CEP1 peptides, MtCEP1D1:hyp4,11 and AtCEP1:hyp4,11, enhanced uptake not only of nitrate, but also phosphate and sulfate in both model plant species. Transcriptome analysis of Medicago roots treated with different MtCEP1 encoded peptide domains revealed that hundreds of genes respond to these peptides, including several nitrate transporters and a sulfate transporter that may mediate the uptake of these macronutrients downstream of CEP1 signaling. Likewise, several putative signaling pathway genes including LEUCINE-RICH REPEAT RECPTOR-LIKE KINASES and Myb domain containing transcription factors, were induced in roots by CEP1 treatment. Thus, a scalable method has been developed for screening synthetic peptides of potential use in agriculture, with CEP1 shown to be one such peptide.


2021 ◽  
Author(s):  
Bienson Ceasar V. Narvarte ◽  
Tom Gerald T. Genovia ◽  
Lourie Ann R. Hinaloc ◽  
Michael Y. Roleda

2021 ◽  
Author(s):  
Takumi Ito ◽  
Ayumi Tanaka-Oda ◽  
Taiga Masumoto ◽  
Maiko Akatsuki ◽  
Naoki Makita

Abstract Purpose: Nitrogen (N) uptake by fine roots of trees is important for understanding the root physiological function in forest ecosystems, but a direct investigation of in situ rate of ammonium and nitrate uptake is limited. Thus, we aimed to clarify the inorganic N uptake rates among tree species and to determine the factors controlling N uptake through relationships with fine root traits in cool temperate forests.Methods: Using a solution depletion method for measuring N uptake, we observed the relationship of N uptake rate in the form of NH4+ and NO3– by an intact root system with root morphological traits, such as root diameter, specific root length (SRL), and root tissue density (RTD), and chemical traits, including root nitrogen (N) content. Results: The coniferous roots in this study preferred NH4+ form more than NO3– form. Across species, there were significant relationships between NH4+ uptake and diameter, SRL, and RTD, while these were significant only for RTD in NO3– form. Relationships between N uptake rates and root morphological traits differed between NH4+ and NO3–. Conclusions: We found that the relationship of inorganic N uptake with the morphological traits depends on the characteristics of the N form adsorbed through soil and tree N assimilation efficiency. An approach on the relationships of in situ N uptake with root traits will provide a breakthrough in our understanding of the root physiological function and the prediction of fundamental N acquisition strategies.


2021 ◽  
Vol 18 (22) ◽  
pp. 6031-6059
Author(s):  
Raquel F. Flynn ◽  
Thomas G. Bornman ◽  
Jessica M. Burger ◽  
Shantelle Smith ◽  
Kurt A. M. Spence ◽  
...  

Abstract. The Weddell Sea represents a point of origin in the Southern Ocean where globally important water masses form. Biological activities in Weddell Sea surface waters thus affect large-scale ocean biogeochemistry. During January–February 2019, we measured net primary production (NPP), nitrogen (nitrate, ammonium, urea) uptake, and nitrification in the western Weddell Sea at the Antarctic Peninsula (AP) and Larsen C Ice Shelf (LCIS), in the southwestern Weddell Gyre (WG), and at Fimbul Ice Shelf (FIS) in the south-eastern Weddell Sea. The highest average rates of NPP and greatest nutrient drawdown occurred at LCIS. Here, the phytoplankton community was dominated by colonial Phaeocystis antarctica, with diatoms increasing in abundance later in the season as sea ice melted. At the other stations, NPP was variable, and diatoms known to enhance carbon export (e.g. Thalassiosira spp.) were dominant. Euphotic zone nitrification was always below detection, such that nitrate uptake could be used as a proxy for carbon export potential, which was highest in absolute terms at LCIS and the AP. Surprisingly, the highest f ratios occurred near FIS rather than LCIS (average of 0.73±0.09 versus 0.47±0.08). We attribute this unexpected result to partial ammonium inhibition of nitrate uptake at LCIS (where ammonium concentrations were 0.6±0.4 µM, versus 0.05±0.1 µM at FIS), with elevated ammonium resulting from increased heterotrophy following the accumulation of nitrate-fuelled phytoplankton biomass in early summer. Across the Weddell Sea, carbon export appears to be controlled by a combination of physical, chemical, and biological factors, with the highest potential export flux occurring at the ice shelves and lowest in the central WG.


2021 ◽  
Author(s):  
Tomke Susanne Wacker ◽  
Olga Popovic ◽  
Niels Alvin Faircloth Olsen ◽  
Bo Markussen ◽  
Abraham George Smith ◽  
...  

2021 ◽  
Author(s):  
Sonali Roy ◽  
Marcus Griffiths ◽  
Ivone Torres-Jerez ◽  
Bailey Sanchez ◽  
Elizabeth Antonelli ◽  
...  

AbstractThe root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. Uptake from the soil of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization. Here we describe a high-throughput screen of SSP effects on root uptake of multiple nutrients. The SSP, MtCEP1 enhanced nitrate uptake rate per unit root length in Medicago truncatula plants deprived of N. MtCEP1 and AtCEP1 enhanced uptake not only of nitrate, but also phosphate and sulfate in both Medicago and Arabidopsis. Transcriptome analysis of Medicago roots treated with different MtCEP1 encoded peptide domains revealed that hundreds of genes respond to these peptides, including several nitrate transporters and a sulfate transporter that may mediate the uptake of these macronutrients downstream of CEP1 signaling. Likewise, several putative signaling pathway genes were induced in roots by CEP1 treatment. Thus, a scalable method has been developed for screening synthetic peptides of potential use in agriculture, with CEP1 shown to be one such peptide.


2021 ◽  
Vol 13 (17) ◽  
pp. 9554
Author(s):  
Swati Rani ◽  
Raja Chowdhury ◽  
Wendong Tao ◽  
Linda Nedbalova

The microalgal strain Chlorella sorokiniana isolated from a waste stabilization pond was used for tertiary treatment of municipal wastewater. Three light:dark (L:D) regimes of 12:12, 16:8, and 24:0 were used for treating wastewater in microalga (A), microalga + sludge (A + S), and sludge (S) reactors. The removal of nutrients (N and P) was found to be the highest in the microalga-based reactor, with more than 80% removal of biochemical oxygen demand (BOD) and 1.2–5.6 log unit removal of pathogens. The addition of sludge improved chemical oxygen demand (COD) removal. Nitrifiers were found to be predominant in the A + S reactor. Algal biomass productivity was more than 280 mg/L/d in all the L:D regimes. The increase in light regime improved nutrient removal and biomass productivity in the algal reactor. Results of the kinetic study showed that (i) nitrifiers had more affinity for ammonium than microalga, and hence, most of the ammonia was oxidized to nitrate, (ii) microalga assimilated nitrate as the primary nitrogen source in the A + S reactor, and (iii) solubilization of particulate organic nitrogen originated from dead cells reduced the nitrogen removal efficiency. However, in the microalga-based reactor, the ammonium uptake was higher than nitrate uptake. Among pathogens, the removal of Salmonella and Shigella was better in the A + S reactor than in the other two reactors (microalga and sludge reactor). Additionally, the heterotrophic plate count was drastically reduced in the presence of microalga. No such drastic reduction was observed in the stand-alone sludge reactor. Kinetic modeling revealed that microalga–pathogen competition and pH-induced die-off were the two predominant factors for pathogen inactivation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengyuan Liu ◽  
Xiaona Zhi ◽  
Yi Wang ◽  
Yang Wang

Abstract Background Tomato (Solanum lycopersicum) is one of the most important horticultural crops, with a marked preference for nitrate as an inorganic nitrogen source. The molecular mechanisms of nitrate uptake and assimilation are poorly understood in tomato. NIN-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in nitrate signaling. Results In this study, genome-wide analysis identified six NLP members in tomato genome. These members were clustered into three clades in a phylogenetic tree. Comparative genomic analysis showed that SlNLP genes exhibited collinear relationships to NLPs in Arabidopsis, canola, maize and rice, and that the expansion of the SlNLP family mainly resulted from segmental duplications in the tomato genome. Tissue-specific expression analysis showed that one of the close homologs of AtNLP6/7, SlNLP3, was strongly expressed in roots during both the seedling and flowering stages, that SlNLP4 and SlNLP6 exhibited preferential expression in stems and leaves and that SlNLP6 was expressed at high levels in fruits. Furthermore, the nitrate uptake in tomato roots and the expression patterns of SlNLP genes were measured under nitrogen deficiency and nitrate resupply conditions. Four SlNLPs, SlNLP1, SlNLP2, SlNLP4 and SlNLP6, were upregulated after nitrogen starvation. And SlNLP1 and SlNLP5 were induced rapidly and temporally by nitrate. Conclusions These results provide significant insights into the potential diverse functions of SlNLPs to regulate nitrate uptake.


Sign in / Sign up

Export Citation Format

Share Document