unbalanced loads
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 71)

H-INDEX

17
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 526
Author(s):  
Edmilson Bermudes Rocha Junior ◽  
Oureste Elias Batista ◽  
Domingos Sávio Lyrio Simonetti

This paper proposes a methodology to monitor the instantaneous value of the current and its derivative in the abc, αβ0, and dq0 reference frames to act in the detection of fault current in medium-voltage distribution systems. The method employed to calculate the derivative was Euler’s, with processing sampling rates of 10, 50, 100, and 200 μs. Using the MATLAB/Simulink platform, fault situations were analyzed on a real feeder of approximately 1.1132 km in length, fed by an 11.4 kV source, composed of 26 unbalanced loads and modeled as constant power. The simulation results show that the detection occurred in the different fault situations implemented in the feeder and that the detection speed is related to the value of the processing sampling rate (PSR) used. Considering all fault situations and regardless of the PSR value used, the total average detection time was 49 µs. Besides that, the joint action of the detection system with the Thyristor Controlled Series Capacitor (TCSC) limited the fault current in each situation. The average detection time for each fault situation analyzed was below the typical time for a recloser to act, regardless of the reference adopted for the analysis.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Longye Pan ◽  
Xianglong Guan ◽  
Xingwei Luan ◽  
Yajun Huang ◽  
Ruwei Zhang ◽  
...  

Tilt bulldozing generates unbalanced loads on two push arms, which leads to the service lives of the two push arms being different. Because the push arms rotate in triaxial directions during tilt bulldozing, it is difficult to accurately analyze the fatigue life of the push arm with one specific boundary condition and loading history. Therefore, a fatigue analysis of the push arms under tilt bulldozing conditions is proposed based on co-simulation of RecurDyn-EDEM-AMESim in this paper. The control of tilt bulldozing conditions is realized automatically according to the tilt angle and blade depth. The dynamic loads of the push arms are accurately calculated in this virtual model. Subsequently, the stress–time histories are obtained to investigate the fatigue lives of push arms. Both the overall damage and the initiation positions of the cracks are predicted herein. It is determined that the fatigue lives of the right and left push arms are 7,317.84 h and 39,381.89 h, respectively. Thus, the life of the push arm on the blade’s tilted side is reduced by 81.42% compared to the other side. Additionally, experimental tests are conducted to verify the accuracy of the virtual model. Analysis results indicate that the strains of the push arms according to the virtual simulation are close to those measured in the experiments.


2022 ◽  
pp. 551-606
Author(s):  
Carlo Makdisie ◽  
Badia Haidar ◽  
Hassan Haes Alhelou

Smart grid technology is the key for a reliable and efficient use of distributed energy resources. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. In this chapter, the authors present smart grid infrastructure issues and integrating solar PV-sourced electricity in the smart grid. Smart grid has many features, including reliability, flexibility on network topology, efficiency, sustainability, and market-enabling. The authors select a photovoltaic active power line conditioner as a case study. This line conditioner is a device designed to extract the maximum power of a photovoltaic (PV) system and to compensate the nonlinear and unbalanced loads of the electrical power systems. The performance of the PV conditioner with the neuro-fuzzy control designed has been analyzed through a simulation platform.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042070
Author(s):  
Dianhui Chen ◽  
Jianguo Li ◽  
Xuanyu Hong ◽  
Diankai Chen

Abstract Due to the complex sea conditions, floating wind turbines produce unbalanced loads. Firstly, this paper will take NERL-5MW floating wind turbine as the model, and apply brainstorming algorithm (BSO) to the independent pitch system based on PID azimuth weight coefficient. Then, a joint simulation will be carried out in OpenFAST-Matlab/Simulink to study its impact on the load of floating wind turbine. Finally, the simulation results reveal that compared with the independent pitch system based on PID azimuth weight coefficient, the proposed method can reduce the load of the floating platform to a certain extent.


2021 ◽  
Vol 19 ◽  
pp. 493-498
Author(s):  
André S. F. Komeno ◽  
◽  
Anésio L. F. Filho ◽  
Joao Y. Ishihara ◽  
Victor P. Brasil

Instantaneous power theory has a central role in power systems analysis. Among mathematical settings used for the development of this theory, quaternion algebra has been used for describing electrical variables in recent works. In this context, this paper aims to describe three-phase power in a quaternion framework. We analyze quaternion power for balanced and unbalanced delta loads, comparing the expressions obtained to the usual expressions of complex power. The quaternion power expression obtained also makes it natural to introduce a decomposition of the unbalanced load in terms of a balanced component and an unbalanced load with null average power. It is also shown that delta unbalanced loads are equivalent to time-varying balanced loads. The results obtained extend the power systems theory in the quaternion domain and emphasize the advantages of using this framework.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Tran Trong Khanh ◽  
VanDung Nguyen ◽  
Eui-Nam Huh

Online workload balancing guarantees that the incoming workloads are processed to the appropriate servers in real time without any knowledge of future resource requests. Currently, by matching the characteristics of incoming Internet of Things (IoT) applications to the current state of computing and networking resources, a mobile edge orchestrator (MEO) provides high-quality service while temporally and spatially changing the incoming workload. Moreover, a fuzzy-based MEO is used to handle the multicriteria decision-making process by considering multiple parameters within the same framework in order to make an offloading decision for an incoming task of an IoT application. In a fuzzy-based MEO, the fuzzy-based offloading strategy leads to unbalanced loads among edge servers. Therefore, the fuzzy-based MEO needs to scale its capacity when it comes to a large number of devices in order to avoid task failures and to reduce service times. In this paper, we investigate and propose an online workload balancing algorithm, which we call the fuzzy-based (FuB) algorithm, for a fuzzy-based MEO. By considering user configuration requirements, server geographic locations, and available resource capacities for achieving an online algorithm, our proposal allocates the proximate server for each incoming task in real time at the MEO. A simulation was conducted in augmented reality, healthcare, compute-intensive, and infotainment applications. Compared to two benchmark schemes that use the fuzzy logic approach for an MEO in IoT environments, the simulation results (using EdgeCloudSim) show that our proposal outperforms the existing algorithms in terms of service time, the number of failed tasks, and processing times when the system is overloaded.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 152
Author(s):  
Litong Lyu ◽  
Xiao Liang ◽  
Jingbo Guo

Segment assembling is one of the principle processes during tunnel construction using shield tunneling machines. The segment erector is a robotic manipulator powered by a hydraulic system to assemble prefabricated concrete segments onto the excavated tunnel surface. Nowadays, automation of the segment erector has become one of the definite developing trends to further improve the efficiency and safety during construction; thus, closed-loop motion control is an essential technology. Within the segment erector, the lifting gantry is driven by dual cylinders to lift heavy segments in the radial direction. Different from the dual-cylinder mechanism used in other machines such as forklifts, the lifting gantry usually works at an inclined angle, leading to unbalanced loads on the two sides. Although strong guide rails are applied to ensure synchronization, the gantry still occasionally suffers from chattering, “pull-and-drag”, or even being stuck in practice. Therefore, precise motion tracking control as well as high-level synchronization of the dual cylinders have become essential for the lifting gantry. In this study, a complete dynamics model of the dual-cylinder lifting gantry is constructed, considering the linear motion as well as the additional rotational motion of the crossbeam, which reveals the essence of poor synchronization. Then, a two-level synchronization control scheme is synthesized. The thrust allocation is designed to coordinate the dual cylinders and keep the rotational angle of the crossbeam within a small range. The motion tracking controller is designed based on the adaptive robust control theory to guarantee the linear motion tracking precision. The theoretical performance is analyzed with corresponding proof. Finally, comparative simulations are conducted and the results show that the proposed scheme achieves high-precision motion tracking performance and simultaneous high-level synchronization of dual cylinders under unbalanced loads.


Sign in / Sign up

Export Citation Format

Share Document