viral egress
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 947
Author(s):  
Sanya Sureram ◽  
Irene Arduino ◽  
Reiko Ueoka ◽  
Massimo Rittà ◽  
Rachele Francese ◽  
...  

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary C. Elmore ◽  
L. Patrick Havlik ◽  
Daniel K. Oh ◽  
Leif Anderson ◽  
George Daaboul ◽  
...  

AbstractAdeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some AAV serotypes are secreted in a pre-lytic manner as free or extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a frameshifted open reading frame in the AAV cap gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with MAAP restored secretion of multiple AAV/MAAPΔ serotypes. Further, multiple processing and analytical methods corroborate that one plausible mechanism by which MAAP promotes viral egress is through AAV/EV association. In addition to characterizing a novel viral egress factor, we highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


Author(s):  
Di Chen ◽  
Qiaoxia Zheng ◽  
Long Sun ◽  
Mingming Ji ◽  
Yan Li ◽  
...  
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1881
Author(s):  
Poulami Das ◽  
Jaquelin P. Dudley

Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5501
Author(s):  
Thippayawan Ratanakomol ◽  
Sittiruk Roytrakul ◽  
Nitwara Wikan ◽  
Duncan R. Smith

Mosquito transmitted viruses, particularly those of the genus Flavivirus, are a significant healthcare burden worldwide, especially in tropical and sub-tropical areas. However, effective medicines for these viral infections remains lacking. Berberine (BBR) is an alkaloid found in some plants used in traditional medicines in Southeast Asia and elsewhere, and BBR has been shown to possess anti-viral activities. During a screen for potential application to mosquito transmitted viruses, BBR was shown to have virucidal activity against dengue virus (DENV; IC50 42.87 µM) as well as against Zika virus (IC50 11.42 µM) and chikungunya virus (IC50 14.21 µM). BBR was shown to have cellular effects that lead to an increase in cellular DENV E protein without a concomitant effect on DENV nonstructural proteins, suggesting an effect on viral particle formation or egress. While BBR was shown to have an effect of ERK1/2 activation this did not result in defects in viral egress mechanisms. The primary effect of BBR on viral production was likely to be through BBR acting through AMPK activation and disruption of lipid metabolism. Combined these results suggest that BBR has a dual effect on DENV infection, and BBR may have the potential for development as an anti-DENV antiviral.


Author(s):  
Poulami Das ◽  
Jaquelin P. Dudley

Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.


2021 ◽  
Author(s):  
Tomoyuki Hatano ◽  
Saravanan Palani ◽  
Dimitra Papatziamou ◽  
Diorge P. Souza ◽  
Ralf Salzer ◽  
...  

SUMMARYThe ESCRT machinery performs a critical role in membrane remodelling events in all eukaryotic cells, including in membrane trafficking, membrane repair, cytokinetic abscission, in viral egress, and in the generation of extracellular vesicles. While the machinery is complex in modern day eukaryotes, where it comprises dozens of proteins, the system has simpler and more ancient origins. Indeed, homologues of ESCRT-III and the Vps4 ATPase, the proteins that execute the final membrane scission reaction, play analogous roles in cytokinesis and potentially in extracellular vesicle formation in TACK archaea where ESCRT-I and II homologues seem to be absent. Here, we explore the phylogeny, structure, and biochemistry of homologues of the ESCRT machinery and the associated ubiquitylation system found in genome assemblies of the recently discovered Asgard archaea. In these closest living prokaryotic relatives of eukaryotes, we provide evidence for the ESCRT-I and II sub-complexes being involved in the ubiquitin-directed recruitment of ESCRT-III,_as it is in eukaryotes. This analysis suggests a pre-eukaryotic origin for the Ub-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1541
Author(s):  
Louisa F. Ludwig-Begall ◽  
Axel Mauroy ◽  
Etienne Thiry

Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 846
Author(s):  
Madhusudan Rajendran ◽  
Florian Krammer ◽  
Meagan McMahon

The influenza virus neuraminidase (NA) is primarily involved in the release of progeny viruses from infected cells—a critical role for virus replication. Compared to the immuno-dominant hemagglutinin, there are fewer NA subtypes, and NA experiences a slower rate of antigenic drift and reduced immune selection pressure. Furthermore, NA inhibiting antibodies prevent viral egress, thus preventing viral spread. Anti-NA immunity can lessen disease severity, reduce viral shedding, and decrease viral lung titers in humans and various animal models. As a result, there has been a concerted effort to investigate the possibilities of incorporating immunogenic forms of NA as a vaccine antigen in future vaccine formulations. In this review, we discuss NA-based immunity and describe several human NA-specific monoclonal antibodies (mAbs) that have a broad range of protection. We also review vaccine platforms that are investigating NA antigens in pre-clinical models and their potential use for next-generation influenza virus vaccines. The evidence presented here supports the inclusion of immunogenic NA in future influenza virus vaccines.


Cell ◽  
2021 ◽  
Vol 184 (17) ◽  
pp. 4430-4446.e22
Author(s):  
Lauren E. Williamson ◽  
Kristen M. Reeder ◽  
Kevin Bailey ◽  
Minh H. Tran ◽  
Vicky Roy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document