pi3k inhibitor ly294002
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 44)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kaixuan Lv ◽  
Lingyu Kong ◽  
Mei Yang ◽  
Linlin Zhang ◽  
Shangmin Chu ◽  
...  

Atherosclerosis (AS) seriously impairs the health of human beings and is manifested initially as endothelial cells (ECs) impairment and dysfunction in vascular intima, which can be alleviated through mobilization of endothelial progenitor cells (EPCs) induced by stromal-cell-derived factor-1α (SDF-1α). A strong inverse correlation between HDL and AS has been proposed. The aim of the present work is to investigate whether 4F, an apolipoprotein A-I (apoA-I, major component protein of HDL) mimic peptide, can upregulate SDF-1α in mice and human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. The protein levels of SDF-1α were measured by ELISA assay. Protein levels of HIF-1α, phosphorylated Akt (p-Akt), and phosphorylated ERK (p-ERK) were evaluated by Western blotting analysis. The results show that L-4F significantly upregulates protein levels of HIF-1α, Akt, and ERK, which can be inhibited by the PI3K inhibitor, LY294002, or ERK inhibitor, PD98059, respectively. Particularly, LY294002 can downregulate the levels of p-ERK, while PD98059 cannot suppress that of p-Akt. D-4F can upregulate the levels of HIF, p-Akt, and p-ERK in the abdominal aorta and inferior vena cava from mice. These results suggest that 4F promotes SDF-1α expression in ECs through PI3K/Akt/ERK/HIF-1α signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bihao Liu ◽  
Yiwen Cao ◽  
Dejuan Wang ◽  
Yuan Zhou ◽  
Peichun Zhang ◽  
...  

Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease. Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully understood. The present study explored the therapeutic effect and the underlying mechanism of ZWT on mitochondrial function in cationic bovine serum albumin (C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy. The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The mitochondrial functions of podocytes were measured by ATP concentration, mitochondrial membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level detection, the expressions of mitophagy-related proteins, including LC3, p62, heat shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20 (TOMM20), were measured by Western blot, as the colocation of LC3 and mitochondrial marker COX IV were evaluated by immunofluorescence. Our results manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr and BUN, inhibition of mesangial matrix proliferation, protection against foot processes fusion, and basement membrane thickening. More importantly, ZWT protected against mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in CGN model rats, increased ATP content and MMP in podocytes, and decreased excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN. Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy via the PI3K/AKT/mTOR and AMPK pathways.


2021 ◽  
Author(s):  
Hyun-Jeong Kim ◽  
Jing-fei Dong ◽  
Yejin Song ◽  
Hyo-Il Jung ◽  
Jaewoo Song

Abstract Inflammation is an essential contributing factor in the development of thrombosis. Using a microfluidic flow chamber, we investigated how the proinflammatory cytokine interleukin 6 (IL-6) affects the cleavage of platelet-bearing ultra-large VWF (ULVWF) by plasma ADAMTS13. We found that IL-6-treated platelets perfused at arteriolar shear stress significantly enhanced the ULVWF-platelet complex formation on activated endothelial cells and suppressed their clearance by ADAMTS13 under flow conditions. We also detected the phosphorylation of the serine/threonine kinase Akt and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in platelets treated with IL-6. Treatment of IL-6-primed platelets with either the phosphoinositol-3 kinase (PI3K) inhibitor LY294002 or the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduced the ULVWF-platelet complex formation and restored the clearance of the complex by plasma ADAMTS13, compared to IL-6-primed platelets. Furthermore, IL-6 enhanced the phosphorylation of the intracellular adaptor molecule 14-3-3ζ, which regulates VWF binding to the glycoprotein (GP) Ib-IX complex. The 14-3-3 antagonist R18 significantly increased ADAMTS-13 cleavage of ULVWF strings with adherent IL-6-treated platelets. These findings indicate that IL-6 related intracellular signals of platelet is involved in regulating ULVWF-platelet binding and ULVWF cleavage by ADAMTS13.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 891
Author(s):  
Tianhu Wang ◽  
Jingjing Wang ◽  
Tong Zhang ◽  
Aixin Gu ◽  
Jianping Li ◽  
...  

Zearalenone (ZEN) is a non-steroidal estrogen mycotoxin produced by Fusarium fungi, which inevitably exists in human and animal food or feed. Previous studies indicated that apoptosis seems to be a key determinant of ZEN-induced toxicity. This experiment aimed to investigate the protective effects of Glutamine (Gln) on ZEN-induced cytotoxicity in IPEC-J2 cells. The experimental results showed that Gln was able to alleviate the decline of cell viability and reduce the production of reactive oxygen species and calcium (Ca2+) induced by ZEN. Meanwhile, the mRNA expression of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, and catalase was up-regulated after Gln addition. Subsequently, Gln supplementation resulted in the nuclear fission and Bad-fluorescence distribution of apoptotic cells were weakened, and the mRNA expression and protein expression of pro-apoptotic genes and apoptotic rates were significantly reduced. Moreover, ZEN reduced the phosphorylation Akt, decreased the expression of Bcl-2, and increased the expression of Bax. Gln alleviated the above changes induced by ZEN and the antagonistic effects of Gln were disturbed by PI3K inhibitor (LY294002). To conclude, this study revealed that Gln exhibited significant protective effects on ZEN-induced apoptosis, and this effect may be attributed to the PI3K/Akt signaling pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amin Huang ◽  
Peiting Zeng ◽  
Yinguang Li ◽  
Wenhua Lu ◽  
Yaoming Lai

Internal tandem duplications (ITD) mutation within FMS-like tyrosine kinase 3 (FLT3), the most frequent mutation happens in almost 20% acute myeloid leukemia (AML) patients, always predicts a poor prognosis. As a small molecule tyrosine kinase inhibitor, sorafenib is clinically used for the treatment of advanced renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), and differentiated thyroid cancer (DTC), with its preclinical and clinical activity demonstrated in the treatment of Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutant AML. Even though it shows a rosy future in the AML treatment, the short response duration remains a vital problem that leads to treatment failure. Rapid onset of drug resistance is still a thorny problem that we cannot overlook. Although the mechanisms of drug resistance have been studied extensively in the past years, there is still no consensus on the exact reason for resistance and without effective therapeutic regimens established clinically. My previous work reported that sorafenib-resistant FLT3-ITD mutant AML cells displayed mitochondria dysfunction, which rendered cells depending on glycolysis for energy supply. In my present one, we further illustrated that losing the target protein FLT3 and the continuously activated PI3K/Akt signaling pathway may be the reason for drug resistance, with sustained activation of PI3K/AKT signaling responsible for the highly glycolytic activity and adenosine triphosphate (ATP) generation. PI3K inhibitor, LY294002, can block PI3K/AKT signaling, further inhibit glycolysis to disturb ATP production, and finally induce cell apoptosis. This finding would pave the way to remedy the FLT3-ITD mutant AML patients who failed with FLT3 targeted therapy.


Author(s):  
Joshua J N Burton ◽  
Amanda J Luke ◽  
Melissa E Pepling

Abstract Cell signaling mediated by the KIT receptor is critical for many aspects of oogenesis including the proliferation and migration of primordial germ cells, as well as the survival, growth, and maturation of ovarian follicles. We previously showed that KIT regulates cyst breakdown and primordial follicle formation, and in this study, have investigated the mechanisms downstream of the receptor by modulating the activity of two downstream signaling cascades: the phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) pathways. E17.5 ovaries were cultured for five days with a daily dose of media supplemented with either the PI3K inhibitor LY294002, the MEK inhibitor U0126, or a DMSO vehicle control. Our histological observations aligned with the established role of PI3K in oocyte growth and primordial follicle activation but also revealed that LY294002 treatment delayed the processes of cyst breakdown and primordial follicle formation. U0126 treatment also led to a reduction in oocyte growth and follicle development but did not appear to affect cyst breakdown. The delay in cyst breakdown was mitigated when ovaries were dually dosed with LY294002 and KITL, suggesting that while KIT may signal through PI3K to promote cyst breakdown, other signaling networks downstream of the receptor could compensate. These observations unearth a role for PI3K signaling in the establishment of the ovarian reserve and suggest that PI3K might be the primary mediator of KIT-induced cyst breakdown and primordial follicle formation in the mouse ovary.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 599
Author(s):  
Shiqing Jiang ◽  
E Zhang ◽  
Hang Ruan ◽  
Jiahui Ma ◽  
Xingming Zhao ◽  
...  

Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Abdullah ◽  
Tomohisa Nakamura ◽  
Taslima Ferdous ◽  
Yuan Gao ◽  
Yuxin Chen ◽  
...  

Exosomes are vesicles secreted by various kinds of cells, and they are rich in cholesterol, sphingomyelin (SM), phosphatidylcholine, and phosphatidylserine. Although cellular sphingolipid-mediated exosome release has been reported, the involvement of other lipid components of cell membranes in the regulation of exosome release is poorly understood. Here, we show that the level of exosome release into conditioned media is significantly reduced in cultured astrocytes prepared from apolipoprotein E (ApoE) knock-out mice when compared to those prepared from wild-type (WT) mice. The reduced level of exosome release was accompanied by elevated levels of cellular cholesterol. The addition of cholesterol to WT astrocytes significantly increased the cellular cholesterol levels and reduced exosome release. PI3K/Akt phosphorylation was enhanced in ApoE-deficient and cholesterol-treated WT astrocytes. In contrast, the depletion of cholesterol in ApoE-deficient astrocytes due to treatment with β-cyclodextrin recovered the exosome release level to a level similar to that in WT astrocytes. In addition, the reduced levels of exosome release due to the addition of cholesterol recovered to the control levels after treatment with a PI3K inhibitor (LY294002). The cholesterol-dependent regulation of exosome release was also confirmed by in vivo experiments; that is, exosome levels were significantly reduced in the CSF and blood serum of WT mice that were fed a high-fat diet and had increased cholesterol levels when compared to those in WT mice that were fed a normal diet. These results suggest that exosome release is regulated by cellular cholesterol via stimulation of the PI3K/Akt signal pathway.


Author(s):  
Toshinori Yoshioka ◽  
Daisuke Yamada ◽  
Keita Iio ◽  
Hiroshi Nagase ◽  
Akiyoshi Saitoh

Background and Purpose Growing evidence demonstrates that the delta opioid receptor (DOP) is an attractive candidate for novel antidepressants with the potential to exhibit rapid action with few adverse effects. However, the underlying detailed functional mechanism remains elusive. Previously, we reported that the selective DOP agonist, KNT-127, produced robust antidepressant-like effects in the mice forced swimming test (FST). Thus, we attempted to identify the cellular mechanism underlying this effect. Experimental Approach Male ICR mice (4–6 weeks) were used in all experiments. The FST was conducted as a screening model for antidepressants. The phosphorylation level of proteins in specific brain regions was quantified using Western blotting. Glutamate/gamma-aminobutyric acid-dependent postsynaptic currents were detected using whole-cell voltage-clamp recordings. Key Results The selective mTOR inhibitor, rapamycin, and the PI3K inhibitor, LY294002, blocked the antidepressant-like effects of KNT-127 in the FST. KNT-127 increased the phosphorylation level of mTOR signal-related proteins, Akt and p70S6K, in the medial prefrontal cortex. The bilateral microinfusion of KNT-127 in the infralimbic cortex decreased immobility in the FST. The frequency of miniature excitatory postsynaptic currents in the infralimbic cortex increased and that of miniature inhibitory postsynaptic currents decreased with the perfusion of KNT-127, which was blocked by pretreatment with rapamycin. Conclusions and Implications KNT-127 displays antidepressant-like actions through the direct facilitation of neuronal excitability in the mice infralimbic cortex, which is implicated in the PI3K-Akt-mTOR-p70S6K signaling pathway. These results could indicate the first steps in elucidating the complete mechanical functions of DOPs as a potential candidate for novel antidepressants.


Sign in / Sign up

Export Citation Format

Share Document