fredholm determinants
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Yuchen Liao

AbstractWe study the one-dimensional discrete time totally asymmetric simple exclusion process with parallel update rules on a spatially periodic domain. A multi-point space-time joint distribution formula is obtained for general initial conditions. The formula involves contour integrals of Fredholm determinants with kernels acting on certain discrete spaces. For a class of initial conditions satisfying certain technical assumptions, we are able to derive large-time, large-period limit of the joint distribution, under the relaxation time scale $$t=O(L^{3/2})$$ t = O ( L 3 / 2 ) when the height fluctuations are critically affected by the finite geometry. The assumptions are verified for the step and flat initial conditions. As a corollary we obtain the multi-point distribution of discrete time TASEP on the whole integer lattice $${\mathbb {Z}}$$ Z by taking the period L large enough so that the finite-time distribution is not affected by the boundary. The large time limit for the multi-time distribution of discrete time TASEP on $${\mathbb {Z}}$$ Z is then obtained for the step initial condition.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Etienne Granet ◽  
Henrik Dreyer ◽  
Fabian Essler

We consider the XY spin chain with arbitrary time-dependent magnetic field and anisotropy. We argue that a certain subclass of Gaussian states, called Coherent Ensemble (CE) following [1], provides a natural and unified framework for out-of-equilibrium physics in this model. We show that all correlation functions in the CE can be computed using form factor expansion and expressed in terms of Fredholm determinants. In particular, we present exact out-of-equilibrium expressions in the thermodynamic limit for the previously unknown order parameter 1-point function, dynamical 2-point function and equal-time 3-point function.


Pramana ◽  
2021 ◽  
Vol 95 (3) ◽  
Author(s):  
A K Behera ◽  
P Sahoo ◽  
B Khirali ◽  
U Laha

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Oleksandr Gamayun ◽  
Nikolai Iorgov ◽  
Yu. Zhuravlev

We introduce effective form factors for one-dimensional lattice fermions with arbitrary phase shifts. We study tau functions defined as series of these form factors. On the one hand we perform the exact summation and present tau functions as Fredholm determinants in the thermodynamic limit. On the other hand simple expressions of form factors allow us to present the corresponding series as integrals of elementary functions. Using this approach we re-derive the asymptotics of static correlation functions of the XY quantum chain at finite temperature.


2021 ◽  
Vol 8 (4) ◽  
pp. 42-51
Author(s):  
Thomas Britz ◽  
Alan Carey ◽  
Fritz Gesztesy ◽  
Roger Nichols ◽  
Fedor Sukochev ◽  
...  

Author(s):  
Sofia Tarricone ◽  

We consider Fredholm determinants of matrix Hankel operators associated to matrix versions of the n-th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlevé II hierarchy, defined through a matrix-valued version of the Lenard operators. In particular, the Riemann-Hilbert techniques used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitly written in terms of the matrix-valued Lenard operators and some solutions of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy Hankel operators.


2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
João Caetano ◽  
Shota Komatsu

Abstract The g-function is a measure of degrees of freedom associated to a boundary of two-dimensional quantum field theories. In integrable theories, it can be computed exactly in a form of the Fredholm determinant, but it is often hard to evaluate numerically. In this paper, we derive functional equations — or equivalently integral equations of the thermodynamic Bethe ansatz (TBA) type — which directly compute the g-function in the simplest integrable theory; the sinh-Gordon theory at the self-dual point. The derivation is based on the classic result by Tracy and Widom on the relation between Fredholm determinants and TBA, which was used also in the context of topological string. We demonstrate the efficiency of our formulation through the numerical computation and compare the results in the UV limit with the Liouville CFT. As a side result, we present multiple integrals of Q-functions which we conjecture to describe a universal part of the g-function, and discuss its implication to integrable spin chains.


Sign in / Sign up

Export Citation Format

Share Document