triangular part
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chao-Juan Huang ◽  
Xia Zhou ◽  
Xin Yuan ◽  
Wei Zhang ◽  
Ming-Xu Li ◽  
...  

White matter hyperintensities (WMHs) of presumed vascular origin are one of the most important neuroimaging markers of cerebral small vessel disease (CSVD), which are closely associated with cognitive impairment. The aim of this study was to elucidate the pathogenesis of WMHs from the perspective of inflammation and hypoperfusion mechanisms. A total of 65 patients with WMHs and 65 healthy controls were enrolled in this study. Inflammatory markers measurements [hypersensitive C-reactive protein (hsCRP) and lipoprotein-associated phospholipase A2 (Lp-PLA2)], cognitive evaluation, and pseudocontinuous arterial spin labeling (PCASL) MRI scanning were performed in all the subjects. The multivariate logistic regression analysis showed that Lp-PLA2 was an independent risk factor for WMHs. Cerebral blood flow (CBF) in the whole brain, gray matter (GM), white matter (WM), left orbital medial frontal gyrus [MFG.L (orbital part)], left middle temporal gyrus (MTG.L), and right thalamus (Tha.R) in the patients was lower than those in the controls and CBF in the left triangular inferior frontal gyrus [IFG.L (triangular part)] was higher in the patients than in the controls. There was a significant correlation between Lp-PLA2 levels and CBF in the whole brain (R = −0.417, p < 0.001) and GM (R = −0.278, p = 0.025), but not in the WM in the patients. Moreover, CBF in the MFG.L (orbital part) and the Tha.R was, respectively, negatively associated with the trail making test (TMT) and the Stroop color word test (SCWT), suggesting the higher CBF, the better executive function. The CBF in the IFG.L (triangular part) was negatively correlated with attention scores in the Cambridge Cognitive Examination-Chinese Version (CAMCOG-C) subitems (R = −0.288, p = 0.020). Our results revealed the vascular inflammation roles in WMHs, which may through the regulation of CBF in the whole brain and GM. Additionally, CBF changes in different brain regions may imply a potential role in the modulation of cognitive function in different domains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danian Li ◽  
Hanyue Zhang ◽  
Yujie Liu ◽  
Xinyu Liang ◽  
Yaoping Chen ◽  
...  

Background: Major depressive disorder (MDD) patients face an increased risk of developing cognitive impairments. One of the prominent cognitive impairments in MDD patients is verbal fluency deficit. Nonetheless, it is not clear which vulnerable brain region in MDD is interactively linked to verbal fluency deficit. It is important to gain an improved understanding for verbal fluency deficit in MDD.Methods: Thirty-four MDD patients and 34 normal controls (NCs) completed resting-state fMRI (rs-fMRI) scan and a set of verbal fluency tests (semantic VFT and phonemic VFT). Fourteen brain regions from five brain networks/systems (central executive network, default mode network, salience network, limbic system, cerebellum) based on their vital role in MDD neuropathology were selected as seeds for functional connectivity (FC) analyses with the voxels in the whole brain. Finally, correlations between the z-score of the FCs from clusters showing significant between-group difference and z-score of the VFTs were calculated using Pearson correlation analyses.Results: Increased FCs in MDD patients vs. NCs were identified between the bilateral posterior cingulate cortex (PCC) and the right inferior frontal gyrus (triangular part), in which the increased FC between the right PCC and the right inferior frontal gyrus (triangular part) was positively correlated with the z score of phonemic VFT in the MDD patients. Moreover, decreased FCs were identified between the right hippocampal gyrus and PCC, as well as left cerebellum Crus II and right parahippocampal gyrus in MDD patients vs. NCs.Conclusions: The MDD patients have altered FCs among key brain regions in the default mode network, the central executive network, the limbic system, and the cerebellum. The increased FC between the right PCC and the right inferior frontal gyrus (triangular part) may be useful to better characterize pathophysiology of MDD and functional correlates of the phonemic verbal fluency deficit in MDD.


2021 ◽  
Vol 37 ◽  
pp. 160-162
Author(s):  
Massimiliano Fasi ◽  
Jishe Feng ◽  
Gian Maria Negri Porzio

An amended version of Proposition 3.6 of [Fasi and Negri Porzio, Electron. J. Linear Algebra 36:352--366, 2020] is presented. The result shows that the set of possible determinants of upper Hessenberg matrices with ones on the subdiagonal and elements in the upper triangular part drawn from the set $\{-1,1\}$ is $\{ 2k \mid k \in \langle -2^{n-2} , 2^{n-2} \rangle \}$, instead of $\{ 2k \mid k \in \langle -n+1, n-1 \rangle \}$ as previously stated. This does not affect the main results of the article being corrected and shows that Conjecture 20 in the Characteristic Polynomial Database is true.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Qi Li ◽  
Jeffrey S. Vipperman

Acoustic cloaking is an intriguing phenomenon that has attracted lots of attention. The required inhomogeneous and anisotropic properties of acoustic cloaks derived with transformation acoustics make them difficult to realize. In this paper, a new mapping relation is presented. An acoustic cloak can be divided into any number of arbitrary triangular patterns, which are mapped from similar patterns in virtual space. Transformation from one triangular domain to another leads to homogeneous properties using transformation acoustics. The resulting cloak is composed of homogeneous triangular parts, each having just two alternating layers of material. The manner of division of the cloak affects the properties of each triangular part dramatically, which can be leveraged to vary the properties of each triangular part for more realistic material properties. Simulations of models based on this method show good cloaking performance at reducing the reflected and scattered waves due to the cloaked obstacle.


2005 ◽  
Vol 18 (6) ◽  
pp. 1-6 ◽  
Author(s):  
Guilherme Carvalhal Ribas ◽  
Eduardo Carvalhal Ribas ◽  
Consuelo Junqueira Rodrigues

Object The sylvian fissure or lateral sulcus is the most identifiable feature of the superolateral brain surface and constitutes the main microneurosurgical corridor, given the high frequency of approachable intracranial lesions through this route. The anterior sylvian point (ASyP) divides this fissure in its main anterior and posterior rami and was evaluated in this study for its morphology, exact location, and sulcal and neural relationships to assess its suitability as an initial, visually identifiable landmark for further neuroimaging and intraoperative estimation of its adjoining suprasylvian structures. Methods This study is based on 32 formalin-fixed cerebral hemispheres. The brains were removed from the skulls of 16 cadavers after the introduction of plastic catheters through properly positioned burr holes; the number of specimens for some of the analyzed data differed because of incorrect positioning of catheters or damage to the studied structures caused by the initial steps of the study. The ASyP had a cisternal aspect in 94% of the specimens and was always located inferior to the triangular part of the inferior frontal gyrus, 2.3 ± 0.5 cm in front of the inferior rolandic point. The ASyP was located underneath the 1.5-cm-diameter cranial area of the anterior aspect of the squamous suture. Its adjoining structures that compose the suprasylvian operculum have constant basic morphological configurations. Conclusions The ASyP underlies the anterior aspect of squamous suture just behind the pterion, can be easily recognized, and constitutes a reliable initial sulcal landmark for further estimation of the suprasylvian sulcal and gyral structures. The suprasylvian operculum can be understood as a series of convolutions roughly arranged as a V-shaped convolution, with its vertex constituted by the ASyP, followed by three U-shaped convolutions and one C-shaped convolution.


Sign in / Sign up

Export Citation Format

Share Document