surface fluorination
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhishan Luo ◽  
Qiang Wan ◽  
Zhiyang Yu ◽  
Sen Lin ◽  
Zailai Xie ◽  
...  

AbstractStyrene is one of the most important industrial monomers and is traditionally synthesized via the dehydrogenation of ethylbenzene. Here, we report a photo-induced fluorination technique to generate an oxidative dehydrogenation catalyst through the controlled grafting of fluorine atoms on nanodiamonds. The obtained catalyst has a fabulous performance with ethylbenzene conversion reaching 70% as well as styrene yields of 63% and selectivity over 90% on a stream of 400 °C, which outperforms other equivalent benchmarks as well as the industrial K−Fe catalysts (with a styrene yield of 50% even at a much higher temperature of ca. 600 °C). Moreover, the yield of styrene remains above 50% after a 500 h test. Experimental characterizations and density functional theory calculations reveal that the fluorine functionalization not only promotes the conversion of sp3 to sp2 carbon to generate graphitic layers but also stimulates and increases the active sites (ketonic C=O). This photo-induced surface fluorination strategy facilitates innovative breakthroughs on the carbocatalysis for the oxidative dehydrogenation of other arenes.


Author(s):  
Jae-Ho Kim ◽  
Toshihiro Mishina ◽  
Masanari Namie ◽  
Fumihiro Nishimura ◽  
Susumu Yonezawa
Keyword(s):  

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 713
Author(s):  
Nikolay A. Belov ◽  
Dmitrii S. Pashkevich ◽  
Alexandre Yu Alentiev ◽  
Alain Tressaud

Fluorine-containing polymers occupy a peculiar niche among conventional polymers due to the unique combination of physicochemical properties. Direct surface fluorination of the polymeric materials is one of the approaches for the introduction of fluorine into the chemical structure that allows one to implement advantages of fluorinated polymers in a thin layer. Current review considers the influence of the surface interaction of the polymeric materials and membranes with elemental fluorine on gas, vapor and liquid transport as well as swelling and related phenomena. The increase in direct fluorination duration and concentration of fluorine in the fluorination mixture is shown to result mostly in a reduction of all penetrants permeability to a different extent, whereas selectivity of the selected gas pairs (He-H2, H2-CH4, He-CH4, CO2-CH4, O2-N2, etc.) increases. Separation parameters for the treated polymeric films approach Robeson’s upper bounds or overcome them. The most promising results were obtained for highly permeable polymer, polytrimethylsilylpropyne (PTMSP). The surface fluorination of rubbers in printing equipment leads to an improved chemical resistance of the materials towards organic solvents, moisturizing solutions and reduce diffusion of plasticizers, photosensitizers and other components of the polymeric blends. The direct fluorination technique can be also considered one of the approaches of fabrication of fuel cell membranes from non-fluorinated polymeric precursors that improves their methanol permeability, proton conductivity and oxidative stability.


Sign in / Sign up

Export Citation Format

Share Document