latitude dependence
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 10)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 923 (1) ◽  
pp. 2 ◽  
Author(s):  
A. Josephy ◽  
P. Chawla ◽  
A. P. Curtin ◽  
V. M. Kaspi ◽  
M. Bhardwaj ◽  
...  

Abstract We investigate whether the sky rate of fast radio bursts (FRBs) depends on Galactic latitude using the first catalog of FRBs detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project. We first select CHIME/FRB events above a specified sensitivity threshold in consideration of the radiometer equation, and then we compare these detections with the expected cumulative time-weighted exposure using Anderson–Darling and Kolmogorov–Smirnov tests. These tests are consistent with the null hypothesis that FRBs are distributed without Galactic latitude dependence (p-values distributed from 0.05 to 0.99, depending on completeness threshold). Additionally, we compare rates in intermediate latitudes (∣b∣ < 15°) with high latitudes using a Bayesian framework, treating the question as a biased coin-flipping experiment–again for a range of completeness thresholds. In these tests the isotropic model is significantly favored (Bayes factors ranging from 3.3 to 14.2). Our results are consistent with FRBs originating from an isotropic population of extragalactic sources.


Radiocarbon ◽  
2020 ◽  
Vol 62 (5) ◽  
pp. 1285-1298
Author(s):  
Junghun Park ◽  
Jeong-Wook Seo ◽  
W Hong ◽  
G Park ◽  
Kilho Sung ◽  
...  

ABSTRACTThe 14C peak in AD 775 (M12) has been measured and confirmed globally in several studies since it was first measured in annual tree rings by Miyake et al. (2012). However, M12 data measurements in early- and latewood are limited. This paper presents the Δ14C values in early- and latewood from AD 762–776 Zelkova serrata tree rings from Bangu-dong, Ulsan, South Korea (35°33′N, 129°20′E). The results indicate no early rise in Δ14C values in the latewood of AD 774 in this sample located at mid-latitude. A comparison of the results of this and previous studies suggests latitude dependence (Büntgen et al. 2018); that is, the early rise of Δ14C in AD 774 was not observed at mid-latitudes in South Korea but was observed at high latitudes in Finland. The half-oxidation time of 14C was estimated from a detailed analysis of a small bomb peak in AD 1962. Based on the half-oxidation time, the Δ14C rise in the latewood, but not in the earlywood, of AD 774 in Finland, and the absence of a Δ14C rise in both the early- and latewood of AD 774 in South Korea, the 14C spike was estimated to have been produced from late April to mid-June in AD 774.


2020 ◽  
Vol 634 ◽  
pp. A44 ◽  
Author(s):  
B. Proxauf ◽  
L. Gizon ◽  
B. Löptien ◽  
J. Schou ◽  
A. C. Birch ◽  
...  

Context. Global-scale equatorial Rossby waves have recently been unambiguously identified on the Sun. Like solar acoustic modes, Rossby waves are probes of the solar interior. Aims. We study the latitude and depth dependence of the Rossby wave eigenfunctions. Methods. By applying helioseismic ring-diagram analysis and granulation tracking to observations by HMI aboard SDO, we computed maps of the radial vorticity of flows in the upper solar convection zone (down to depths of more than 16 Mm). The horizontal sampling of the ring-diagram maps is approximately 90 Mm (∼7.5°) and the temporal sampling is roughly 27 hr. We used a Fourier transform in longitude to separate the different azimuthal orders m in the range 3 ≤ m ≤ 15. At each m we obtained the phase and amplitude of the Rossby waves as functions of depth using the helioseismic data. At each m we also measured the latitude dependence of the eigenfunctions by calculating the covariance between the equator and other latitudes. Results. We conducted a study of the horizontal and radial dependences of the radial vorticity eigenfunctions. The horizontal eigenfunctions are complex. As observed previously, the real part peaks at the equator and switches sign near ±30°, thus the eigenfunctions show significant non-sectoral contributions. The imaginary part is smaller than the real part. The phase of the radial eigenfunctions varies by only ±5° over the top 15 Mm. The amplitude of the radial eigenfunctions decreases by about 10% from the surface down to 8 Mm (the region in which ring-diagram analysis is most reliable, as seen by comparing with the rotation rate measured by global-mode seismology). Conclusions. The radial dependence of the radial vorticity eigenfunctions deduced from ring-diagram analysis is consistent with a power law down to 8 Mm and is unreliable at larger depths. However, the observations provide only weak constraints on the power-law exponents. For the real part, the latitude dependence of the eigenfunctions is consistent with previous work (using granulation tracking). The imaginary part is smaller than the real part but significantly nonzero.


2020 ◽  
Vol 889 (1) ◽  
pp. 56 ◽  
Author(s):  
María Gabriela Navarro ◽  
Dante Minniti ◽  
Joyce Pullen ◽  
Rodrigo Contreras Ramos

2019 ◽  
Vol 124 (4) ◽  
pp. 2452-2471 ◽  
Author(s):  
Jihai Dong ◽  
Robin Robertson ◽  
Changming Dong ◽  
Paul Scott Hartlipp ◽  
Tianyu Zhou ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 1240-1279 ◽  
Author(s):  
Pavel V. Doubrovine ◽  
Toni Veikkolainen ◽  
Lauri J. Pesonen ◽  
Elisa Piispa ◽  
Siim Ots ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document