multiobjective genetic algorithm
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 43)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Kuang Shang-qi ◽  
Li Bo-chao ◽  
Wang Yi ◽  
Gong Xue-peng ◽  
Lin Jing-quan

Abstract With the purpose of designing the extreme ultraviolet polarizer with many objectives, a combined application of multiobjective genetic algorithms is theoretically proposed. Owing to the multiobjective genetic algorithm, the relationships between different designing objectives of extreme ultraviolet polarizer have been obtained by analyzing the distribution of nondominated solutions in the 4D objective space, and the optimized multilayer design can be obtained by guiding the searching in the desired region based on the multiobjective genetic algorithm with reference direction. Comparing with the conventional method of multilayer design, our method has a higher probability of achieving the optimal multilayer design. Our work should be the first research in optimizing the optical multilayer designs in the high-dimensional objective space, and our results demonstrate a potential application of our method in the designs of optical thin films.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Seyed Reza Nabavi ◽  
Vahid Ostovari Moghadam ◽  
Mohammad Yahyaei Feriz Hendi ◽  
Amirhossein Ghasemi

With the development of various applications of wireless sensor networks, they have been widely used in different areas. These networks are established autonomously and easily in most environments without any infrastructure and collect information of environment phenomenon for proper performance and analysis of events and transmit them to the base stations. The wireless sensor networks are comprised of various sensor nodes that play the role of the sensor node and the relay node in relationship with each other. On the other hand, the lack of infrastructure in these networks constrains the sources such that the nodes are supplied by a battery of limited energy. Considering the establishment of the network in impassable areas, it is not possible to recharge or change the batteries. Thus, energy saving in these networks is an essential challenge. Considering that the energy consumption rate while sensing information and receiving information packets from another node is constant, the sensor nodes consume maximum energy while performing data transmission. Therefore, the routing methods try to reduce energy consumption based on organized approaches. One of the promising solutions for reducing energy consumption in wireless sensor networks is to cluster the nodes and select the cluster head based on the information transmission parameters such that the average energy consumption of the nodes is reduced and the network lifetime is increased. Thus, in this study, a novel optimization approach has been presented for clustering the wireless sensor networks using the multiobjective genetic algorithm and the gravitational search algorithm. The multiobjective genetic algorithm based on reducing the intracluster distances and reducing the energy consumption of the cluster nodes is used to select the cluster head, and the nearly optimal routing based on the gravitational search algorithm is used to transfer information between the cluster head nodes and the sink node. The implementation results show that considering the capabilities of the multiobjective genetic algorithm and the gravitational search algorithm, the proposed method has improved energy consumption, efficiency, data delivery rate, and information packet transmission rate compared to the previous methods.


Author(s):  
Marcus Vinicius Ferreira de Moura ◽  
Leomardos Santos Marques ◽  
Bruno Henrique Groenner Barbosa ◽  
Ricardo Rodrigues Magalhães

2021 ◽  
Vol 10 (8) ◽  
pp. 530
Author(s):  
Mohamed A. Damos ◽  
Jun Zhu ◽  
Weilian Li ◽  
Abubakr Hassan ◽  
Elhadi Khalifa

One of the most important variables that leads to effective individual and group tours is the tourism route planning approach, which enables tourists to engage with tourism with ease, speed, and safety. However, current methods of designing tourist routes have some glitches, such as relying only on external objectives to find the best route. In this paper, a novel urban tourism path planning method based on a multiobjective genetic algorithm is proposed. The main goal of this paper is to enhance the accuracy of the genetic algorithm (GA) by adopting new parameters and selecting the optimal tourism path by combining external and internal tourist site potentials. Moreover, the GA and analytical hierarchy process (AHP) were used in our proposed approach to evaluate urban tourism route planning under multiple conflicting objectives. To visualize and execute the proposed approach, the geographic information system (GIS) environment was used. Our suggested approach has been applied to develop the tourist road network of Chengdu City in China. Compared with existing tourism path planning approaches, our proposed approach is more accurate and straightforward than other approaches used to choose routes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shakhawat Hossain ◽  
Farzana Islam ◽  
Nass Toufik Tayeb ◽  
Muhammad Aslam ◽  
Jin-Hyuk Kim

Optimal structure of the micromixer with a two-layer serpentine crossing device was accomplished by a multiobjective genetic algorithm and surrogate modeling based on a Navier–Stokes analysis using the trade-off objective functions behavior. The optimization analysis was conducted with three design parameters, i.e., channel width to the pitch span ( w / P ) ratio, major channel width to the pitch span (H/P) ratio, and channel depth to the pitch span (d/P) ratio. Two objective functions (i.e., mixing index and pressure drop) with trade-off characteristics have been used to solve the multiobjective optimization problem. The design domain was predetermined by a parametric investigation; afterward, the Latin hypercube sampling method was employed to select the appropriate design points surrounded by the design domain. The numerical data of the thirty-two design points were used to create the surrogate model; among the different surrogate models, in this study, the Kriging metamodel has been used. The concave pareto-optimal curve signifies the trade-off characteristics linking the objective functions.


2021 ◽  
pp. 1-29
Author(s):  
Nafiseh Masoudi ◽  
Georges Fadel

Abstract The components of complex systems such as automobiles or ships communicate via connectors, including wires, hoses, or pipes whose weight could substantially increase the total weight of the system. Hence, it is of paramount importance to lay out these connectors such that their overall weight is minimized. In this paper, a computationally efficient approach is proposed to optimize the layout of flexible connectors (e.g., cable harnesses) by minimizing their overall length while maximizing their common length. The approach provides a framework to mathematically model the cable harness layout optimization problem. A Multiobjective Genetic Algorithm (MOGA) solver is then applied to solve the optimization problem, which outputs a set of non-dominated solutions to the bi-objective problem. Finally, the effects of the workspace’s geometric structure on the optimal layouts of cable harnesses are discussed using test cases. The overarching objective of this study is to provide insight for designers of cable harnesses when deciding on the final layout of connectors considering issues such as accessibility to and maintainability of these connectors.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3666
Author(s):  
Víctor Ballestín-Bernad ◽  
Jesús Sergio Artal-Sevil ◽  
José Antonio Domínguez-Navarro

Transverse flux motors (TFMs) are being investigated to be used in vehicle traction applications due to their high torque density. In this paper, a two-phase axial-gap transverse flux motor is designed for an electric scooter, proposing a novel analytical design method. First, the dimensioning equations of the motor are obtained based on the vehicle requirements, and the stationary dq model is calculated. Then, the motor is optimized using a multiobjective genetic algorithm, and finally a 3D-FEM verification is made. Both the motor structure and the design method aim to have a low complexity, in order to favor the sizing and manufacturing processes through a low computation time and simple core shapes. This approach has not yet been explored in axial-gap TFMs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kairong Li ◽  
Qianqian Hu ◽  
Jinpeng Liu

Path planning is the core technology of mobile robot decision-making and control and is also a research hotspot in the field of artificial intelligence. Aiming at the problems of slow response speed, long planning path, unsafe factors, and a large number of turns in the conventional path planning algorithm, an improved multiobjective genetic algorithm (IMGA) is proposed to solve static global path planning in this paper. The algorithm uses a heuristic median insertion method to establish the initial population, which improves the feasibility of the initial path and generates a multiobjective fitness function based on three indicators: path length, path security, and path energy consumption, to ensure the quality of the planned path. Then, the selection, crossover, and mutation operators are designed by using the layered method, the single-point crossover method, and the eight-neighborhood-domain single-point mutation method, respectively. Finally, the delete operation is added, to further ensure the efficient operation of the mobile robot. Simulation experiments in the grid environment show that the algorithm can improve the defects of the traditional genetic algorithm (GA), such as slow convergence speed and easy to fall into local optimum. Compared with GA, the optimal path length obtained by planning is shortened by 17%.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lin Lei ◽  
Ming-ze Ding ◽  
Hong-wei Hu ◽  
Yun-xiao Gao ◽  
Hai-lin Xiong ◽  
...  

Supercharging is the main method to improve the output power of marine diesel engines. Nowadays, most marine diesel engines use turbocharging technology, which increases the air pressure and density into the cylinder and the amount of fuel injected correspondingly so as to achieve the purpose of improving the power. In a marine diesel engine, the turbocharger has become an indispensable part. The performance of turbochargers in a harsh working environment of high temperature and high pressure for a long time will directly affect the performance of diesel engine. Based on the market feedback data from manufacturers, the failure modes of compressor impeller, turbine blade, and turbine disk of marine diesel turbocharger are analyzed, and the statistical model of random factors is established. Using DOE design, the structural strength simulation data of 46 compressors and 62 turbines are obtained, and the response surface model is constructed. On this basis, Monte Carlo sampling is carried out to analyze the reliability of the compressor and turbine. The reliability of the compressor is good, while that of the turbine disk is 0.943 and that of the turbine blade is 0.96, which still has the potential of reliability optimization space. Therefore, a multiobjective optimization method based on the NSGA-II genetic algorithm is proposed to obtain the multiobjective optimization scheme data with the reliability and processing cost of turbine disk and blade as the objective function. After optimization, the reliability of turbine disk and blade is 1, the stress value of turbine blade is optimized by 4.7941%, the stress value of turbine disk is optimized by 3.0136%, the machining cost of the turbine blade is reduced by 15.5087%, and the machining cost of turbine disk is reduced by 3.9907%. At the same time, it is verified by simulation, the data based on NSGA-II multiobjective genetic algorithm are more accurate and have practical engineering reference value. The optimized data based on NSGA-II multiobjective genetic algorithm are used to manufacture new turbine samples, and the accelerated test of simulation samples is carried out. The cycle life of the optimized turbine can reach 101,697 cycles and 118,687 cycles, which is 51.75% and 77.11% longer than that of the unoptimized turbine. It can be seen that the optimized turbine can meet the requirements of the reliability index while reducing the manufacturing cost.


Sign in / Sign up

Export Citation Format

Share Document