tumor relapse
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 75)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mounir Tilaoui ◽  
Hassan Ait Mouse ◽  
Abdelmajid Zyad

Cancer is a complex multifactorial disease that results from alterations in many physiological and biochemical functions. Over the last few decades, it has become clear that cancer cells can acquire multidrug resistance to conventional anticancer drugs, resulting in tumor relapse. Thus, there is a continuous need to discover new and effective anticancer drugs. Natural products from plants have served as a primary source of cancer drugs and continue to provide new plant-derived anticancer drugs. The present review describes plant-based alkaloids, which have been reported as active or potentially active in cancer treatment within the past 4 years (2017–2020), both in preclinical research and/or in clinical trials. In addition, recent insights into the possible molecular mechanism of action of alkaloid prodrugs naturally present in plants are also highlighted.


2021 ◽  
Vol 22 (24) ◽  
pp. 13182
Author(s):  
Eric Chekwube Aniogo ◽  
Blassan P. George ◽  
Heidi Abrahamse

Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Min Thura ◽  
Zu Ye ◽  
Abdul Qader Al-Aidaroos ◽  
Qiancheng Xiong ◽  
Jun Yi Ong ◽  
...  

Author(s):  
Vladimir Bilim ◽  
Senji Hoshi

Urinary bladder cancer is frequently multifocal and has a high incidence of recurrence. Although the prostatic urethra is a frequent site of tumor relapse in patients with non-muscle-invasive bladder cancer treated with TURBT, such tumors are often underappreciated. Here we present two cases having urethral recurrence after TURBT.


2021 ◽  
Author(s):  
Tao Luo ◽  
Yile Wang ◽  
Jinke Wang

In 2020, nearly 20 million peoples got cancer and nearly 10 million peoples died of cancer, indicating the current therapies do not meet the cancer treatment and cancer remains a great threat to human health and life. New therapies are still in urgent demand. In a recent study, we developed a new effective cancer therapy, gene-interfered ferroptosis therapy (GIFT), by combining cancer cell-specific knockdown of two iron efflux genes (FPN and LCN2) with iron nanoparticles (FeNPs). GIFT shows wide antitumor activity, high cancer specificity, certain cancer eradication potential, and biosafety. To further improve the therapy, we here develop an updated GIFT named as Ferroptosis ASsassinates Tumor (FAST) by knocking down five additional ferroptosis-resistance genes (FSP1, FTH1, GPX4, SLC7A11, NRF2). As a result, we found that FAST showed more significant antitumor activity than GIFT. Especially, FAST eradicated three different types of tumors (leukemia, colon cancer and lung metastatic melanoma) from over 50 percent of cancer mice, making the mice to survive up to 250 days without tumor relapse. FAST also significantly inhibited and prevented growth of spontaneous breast cancer and improved survival in mice. Additionally, FAST showed high pan-antitumor efficacy, high cancer specificity, and in vivo safety.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mahdi Abdoli Shadbad ◽  
Negar Hosseinkhani ◽  
Zahra Asadzadeh ◽  
Oronzo Brunetti ◽  
Nicola Silvestris ◽  
...  

BackgroundCancer stem cells have been implicated in tumor relapse, tumor invasion, and cancer therapy resistance in high-grade gliomas; thus, characterizing cancer stem cell-related markers can help determine the prognosis of affected patients. Preclinical studies have reported that CD133 is implicated in tumor recurrence and cancer therapy resistance in high-grade gliomas; however, clinical studies have reported inconclusive results regarding its prognostic value in patients with high-grade gliomas.MethodsWe systematically searched the PubMed, Scopus, Web of Science, and Embase databases to obtain peer-reviewed studies published before March 10, 2021. Then, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. By applying the random-effect model, the effect size of studies investigating the progression-free survival (PFS), time to local recurrence (TTL), and time to distant recurrence (TTD) were calculated using RevMan version 5.4. The heterogeneity between the included studies was studied by the I2 index and Cochran’s Q test. Egger test was performed on funnel plots to investigate the potential asymmetry and publication bias among the included studies using CMA version 2.ResultsWith the 10% cut-off, CD133 protein overexpression is associated with the inferior PFS of patients with high-grade gliomas. Increased CD133 protein expression is associated with sooner distant tumor recurrence on MRI in glioblastoma patients and patients with high-grade gliomas and improved TTL on MRI in glioblastoma patients.ConclusionBased on the current evidence from 1086 patients with high-grade gliomas, CD133 overexpression is a valuable marker to predict tumor relapse and tumor recurrence patterns in patients with high-grade gliomas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maxwell Duah ◽  
Lingling Li ◽  
Jingyi Shen ◽  
Qiu Lan ◽  
Bin Pan ◽  
...  

The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4029
Author(s):  
Sandra Muñoz-Galván ◽  
Amancio Carnero

Ovarian cancer is a major cause of fatality due to a gynecological malignancy. This lethality is largely due to the unspecific clinical manifestations of ovarian cancer, which lead to late detection and to high resistance to conventional therapies based on platinum. In recent years, we have advanced our understanding of the mechanisms provoking tumor relapse, and the advent of so-called omics technologies has provided exceptional tools to evaluate molecular mechanisms leading to therapy resistance in ovarian cancer. Here, we review the contribution of genomics, transcriptomics, and epigenomics techniques to our knowledge about the biology and molecular features of ovarian cancers, with a focus on therapy resistance. The use of these technologies to identify molecular markers and mechanisms leading to chemoresistance in these tumors is discussed, as well as potential further applications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Min Thura ◽  
Zu Ye ◽  
Abdul Qader Al-Aidaroos ◽  
Qiancheng Xiong ◽  
Jun Yi Ong ◽  
...  

AbstractPRL3, a unique oncotarget, is specifically overexpressed in 80.6% of cancers. In 2003, we reported that PRL3 promotes cell migration, invasion, and metastasis. Herein, firstly, we show that PRL3 induces Polyploid Giant Cancer Cells (PGCCs) formation. PGCCs constitute stem cell-like pools to facilitate cell survival, chemo-resistance, and tumor relapse. The correlations between PRL3 overexpression and PGCCs attributes raised possibilities that PRL3 could be involved in PGCCs formation. Secondly, we show that PRL3+ PGCCs co-express the embryonic stem cell markers SOX2 and OCT4 and arise mainly due to incomplete cytokinesis despite extensive DNA damage. Thirdly, we reveal that PRL3+ PGCCs tolerate prolonged chemotherapy-induced genotoxic stress via suppression of the pro-apoptotic ATM DNA damage-signaling pathway. Fourthly, we demonstrated PRL3-zumab, a First-in-Class humanized antibody drug against PRL3 oncotarget, could reduce tumor relapse in ‘tumor removal’ animal model. Finally, we confirmed that PGCCs were enriched in relapse tumors versus primary tumors. PRL3-zumab has been approved for Phase 2 clinical trials in Singapore, US, and China to block all solid tumors. This study further showed PRL3-zumab could potentially serve an ‘Adjuvant Immunotherapy’ after tumor removal surgery to eliminate PRL3+ PGCC stem-like cells, preventing metastasis and relapse.


Sign in / Sign up

Export Citation Format

Share Document