bone morphogenetic protein receptor
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 32)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Arindam Mondal ◽  
Rachel NeMoyer ◽  
Mehul Vora ◽  
Logan Napoli ◽  
Zoya Syed ◽  
...  

Abstract Background Recent studies have shown that bone morphogenetic protein receptor 2 (BMPR2) regulates cell survival signaling events in cancer cells independent of the BMP type 1 receptor (BMPR1) or the Smad-1/5 transcription factor. Mutations in BMPR2 trafficking proteins leads to overactive BMP signaling, which leads to neurological diseases caused by BMPR2 stabilization of the microtubules. It is not known whether BMPR2 regulates the microtubules in cancer cells and what effect this has on cell survival. It is also not known whether alterations in BMPR2 trafficking effects activity and response to BMPR2 inhibitors. Methods We utilized BMPR2 siRNA and the BMP receptor inhibitors JL5 and Ym155, which decrease BMPR2 signaling and cause its mislocalization to the cytoplasm. Using the JL5 resistant MDA-MD-468 cell line and sensitive lung cancer cell lines, we examined the effects of BMPR2 inhibition on BMPR2 mislocalization to the cytoplasm, microtubule destabilization, lysosome activation and cell survival. Results We show that the inhibition of BMPR2 destabilizes the microtubules. Destabilization of the microtubules leads to the activation of the lysosomes. Activated lysosomes further decreases BMPR2 signaling by causing it to mislocalizated to the cytoplasm and/or lysosome for degradation. Inhibition of the lysosomes with chloroquine attenuates BMPR2 trafficking to the lysosome and cell death induced by BMPR2 inhibitors. Furthermore, in MDA-MD-468 cells that are resistant to JL5 induced cell death, BMPR2 was predominately located in the cytoplasm. BMPR2 failed to localize to the cytoplasm and/or lysosome following treatment with JL5 and did not destabilize the microtubules or activate the lysosomes. Conclusions These studies reveal that the inhibition of BMPR2 destabilizes the microtubules promoting cell death of cancer cells that involves the activation of the lysosomes. Resistance to small molecules targeting BMPR2 may occur if the BMPR2 is localized predominantly to the cytoplasm and/or fails to localize to the lysosome for degradation.


2021 ◽  
Vol 5 (5) ◽  
pp. 284-297
Author(s):  
Mary M. Tomayko ◽  
Selda Karaaslan ◽  
Begoña Lainez ◽  
Laura J. Conter ◽  
Eunice Song ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gusty R. T. Ryanto ◽  
Koji Ikeda ◽  
Kazuya Miyagawa ◽  
Ly Tu ◽  
Christophe Guignabert ◽  
...  

AbstractPulmonary arterial hypertension is a progressive fatal disease that is characterized by pathological pulmonary artery remodeling, in which endothelial cell dysfunction is critically involved. We herein describe a previously unknown role of endothelial angiocrine in pulmonary hypertension. By searching for genes highly expressed in lung microvascular endothelial cells, we identify inhibin-β-A as an angiocrine factor produced by pulmonary capillaries. We find that excess production of inhibin-β-A by endothelial cells impairs the endothelial function in an autocrine manner by functioning as activin-A. Mechanistically, activin-A induces bone morphogenetic protein receptor type 2 internalization and targeting to lysosomes for degradation, resulting in the signal deficiency in endothelial cells. Of note, endothelial cells isolated from the lung of patients with idiopathic pulmonary arterial hypertension show higher inhibin-β-A expression and produce more activin-A compared to endothelial cells isolated from the lung of normal control subjects. When endothelial activin-A-bone morphogenetic protein receptor type 2 link is overdriven in mice, hypoxia-induced pulmonary hypertension was exacerbated, whereas conditional knockout of inhibin-β-A in endothelial cells prevents the progression of pulmonary hypertension. These data collectively indicate a critical role for the dysregulated endothelial activin-A-bone morphogenetic protein receptor type 2 link in the progression of pulmonary hypertension, and thus endothelial inhibin-β-A/activin-A might be a potential pharmacotherapeutic target for the treatment of pulmonary arterial hypertension.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emilia M Swietlik ◽  
Stefan Gräf ◽  
Nicolas W Morrell

[No abstract. Showing first paragraph of article]Although pulmonary hypertension (PH) had been recognised for centuries, it was not until the invention of cardiac catheterisation in the 1950s that enabled an accurate gene encoding bone morphogenetic protein receptor type 2, in patients with familial and clinical diagnosis. The discovery of heterozygous germline mutations in BMPR2, the idiopathic forms of pulmonary arterial hypertension (PAH) was another breakthrough in understanding the disease and initiated a new era in care of patients with this condition.


Sign in / Sign up

Export Citation Format

Share Document