dna glycosylase
Recently Published Documents


TOTAL DOCUMENTS

1674
(FIVE YEARS 196)

H-INDEX

99
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Olov Wallner ◽  
Armando Cázares-Körner ◽  
Emma Rose Scaletti ◽  
Geoffrey Masuyer ◽  
Tove Bekkhus ◽  
...  

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G:C→T:A transversion, base removal is of the utmost importance for cells to ensure genomic integrity. For cells with elevat-ed levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on a high-throughput screen, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising bind-ing mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


Author(s):  
Ziyad Tariq Muhseen ◽  
Mustafa Hussein Ali ◽  
Nawar Rushdi Jaber ◽  
Dheyaa Shakir Mashrea ◽  
Ali Mamoon Alfalki ◽  
...  

The 8-oxoguanine DNA glycosylase (OGG1) enzyme is a key DNA glycosylase mediating the excision of 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA molecule to the start base excision repair pathway. The OGG1 glycosylase function depletion has been seen to obstruct pathological conditions such as inflammation, A3 T-cell lymphoblastic acute leukemia growth, and neurodegenerative diseases, thus warranting OGG1 as an attractive anti-cancer enzyme. Herein, we employed several drug libraries intending to screen non-toxic inhibitory molecules against the active pocket of the enzyme that achieved stable binding mode in dynamics. Two anti-cancer compounds ([O-]C1=C(CC2=CC=CC=C2)SC(=[N+]1CC(=O)NC3=NC=C(CC4=CC=CC=C4)S3)S and CCCN(CCC)[S]-(=O)(=O)C1=CC=C(C=C1)C(=O)NNC2=NC3=CC=C(Br)C=C3C(=N2)C4=CC=CC=C4) from Selleckchem.com were identified to occupy the active pocket of OGG1 and bind with greater affinity than Control TH5487. The binding affinity of Top-1 is −11.6 kcal/mol while that of Top-2 is −10.7 kcal/mol in contrast to TH5487 Control (−9 kcal/mol). During molecular dynamic simulations versus time, the said compounds are tightly held by the enzyme with no minor structural deviations reported except flexible loops in particular those present at the N and C-terminal. Both the compounds produced extensive hydrophobic interactions with the enzyme along with stable hydrogen bonding. The docking and molecular dynamics simulations predictions were further validated by molecular mechanics with generalized Born and surface area solvation (MM/GBSA) and Poisson Boltzmann surface area (MM/PBSA), and WaterSwap binding energies that validated strong binding of the compounds to the enzyme. The MM/GBSA binding free energy for Top-1 complex is −28.10 kcal/mol, Top-2 complex is −50.14 kcal/mol) and Control is −46.91 kcal/mol while MM/PBSA value for Top-1, Top-2 and Control is −23.38 kcal/mol, −35.29 kcal/mol and −38.20 kcal/mol, respectively. Computational pharmacokinetics support good druglike candidacy of the compounds with acceptable profile of pharmacokinetics and very little toxicity. All these findings support the notion that the compounds can be used in experiments to test their anti-cancer activities.


2021 ◽  
Author(s):  
Brittany L Carroll ◽  
Karl E Zahn ◽  
John P Hanley ◽  
Susan S Wallace ◽  
Julie A Dragon ◽  
...  

Abstract Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.


Talanta ◽  
2021 ◽  
pp. 123144
Author(s):  
Yuzhen Ouyang ◽  
Yifan Liu ◽  
Yuan Deng ◽  
Hailun He ◽  
Jin Huang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6668
Author(s):  
Inga R. Grin ◽  
Grigory V. Mechetin ◽  
Rustem D. Kasymov ◽  
Evgeniia A. Diatlova ◽  
Anna V. Yudkina ◽  
...  

Uracil–DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil–DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme’s active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongyu Wu ◽  
Guangcong Zhang ◽  
Jiamei Ma ◽  
Hongfen Wu ◽  
Ju Xiong ◽  
...  

Background. Accumulating evidence has suggested that Nei-like DNA glycosylase 3 (NEIL3) is associated with human tumors. However, there are few studies on the role of NEIL3 in hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression profile of NEIL3 and its clinical relevance in HCC. Materials and Methods. A total of 130 HCC and corresponding nontumor tissues were collected to perform immunohistochemistry (IHC). The clinical relevance and prognostic value of NEIL3 in HCC were analyzed by the chi-square test, Kaplan–Meier analysis, the Cox proportional hazard model, and nomogram. Results. IHC showed that the NEIL3 protein level was remarkably upregulated in tumor tissues compared with nontumor tissues (fold change = 1.24; P < 0.001 ). High NEIL3 expression was significantly correlated with BCLC stage ( P = 0.004 ) and TNM stage ( P = 0.005 ). Overall survival (OS) and disease-free survival (DFS) rates in the high NEIL3 expression group were significantly worse than those in the low NEIL3 expression group ( P = 0.007 and P = 0.004 , respectively). Furthermore, subgroup analysis showed that high NEIL3 expression predicted worse OS and DFS for HCC patients with advanced TNM stage, poorly differentiated tumor, HBsAg positive, or cirrhosis. Multivariate analysis and the prognostic nomograms revealed that tumor NEIL3 level may serve as a promising prognostic indicator for OS and DFS in HCC patients. Conclusion. Our findings suggested that NEIL3 might be a potential prognosis assessment marker and therapeutic target for HCC patients.


2021 ◽  
Author(s):  
Jonathan I. Gent ◽  
Kyle W. Swentowsky ◽  
Kaitlin M. Higgins ◽  
Fang-Fang Fu ◽  
Yibing Zeng ◽  
...  

Demethylation of transposons can activate expression of nearby genes and cause imprinted gene expression in endosperm, and it is hypothesized to lead to expression of transposon siRNAs that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maternal derepression of R1 (mdr1), a DNA glycosylase with homology to Arabidopsis DEMETER that is partially responsible for demethylation of thousands of regions in endosperm. Maternally-expressed imprinted genes were enriched strongly enriched for overlap with demethylated regions, but the majority of genes that overlapped demethylated regions were not imprinted. Demethylated regions were depleted from the majority of repetitive DNA in the genome but enriched in a set of transposon families accounting for about a tenth of the total demethylated regions. Demethylated regions produced few siRNAs and were not associated with excess CHH methylation in endosperm or other tissues. mdr1 and its close homolog dng102 are essential factors in maternal and paternal fertility in maize, as neither double mutant microgametophytes nor megagametophytes gave rise to seeds. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon regulation nor genomic imprinting are its main function.


Sign in / Sign up

Export Citation Format

Share Document