fertilization effects
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 64)

H-INDEX

43
(FIVE YEARS 6)

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 133
Author(s):  
Alvyra Slepetiene ◽  
Mykola Kochiieru ◽  
Linas Jurgutis ◽  
Audrone Mankeviciene ◽  
Aida Skersiene ◽  
...  

The most important component of agricultural system are soils as the basis for the growth of plants, accumulation of water, plant nutrients and organic matter. The main task of our research was to ascertain changes in soil organic carbon (SOC) and mobile humified carbon fractions in digestate-treated soils. We have performed three field experiments using the same design on two soil types in 2019–2020. We studied the fertilization effects of different phases of digestate on Retisol and Fluvisol. Fertilization treatments: control; separated liquid digestate 85 kg ha−1 N; and 170 kg ha−1 170 N; separated solid digestate 85 kg ha−1 N; and 170 kg ha−1 N. We have found a greater positive effect on the increase in SOC because of the use of the maximum recommended fertilization rate of the solid digestate. The content of mobile humic substances (MHS) tended to increase in grassland and crop rotation field in digestate-treated soil. In our experiment, maximum concentration of SOC was found in 0–10 cm soil layer, while in the deeper layers the amount of SOC, MHS and mobile humic acids proportionally decreased. We concluded, that long-term factors as soil type and land use strongly affected the humification level expressed as HD (%) in the soil and the highest HD was determined in the grassland soil in Fluvisol.


2022 ◽  
Vol 802 ◽  
pp. 149769
Author(s):  
Joan Llusià ◽  
Dolores Asensio ◽  
Jordi Sardans ◽  
Iolanda Filella ◽  
Guille Peguero ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Chhaya M. Werner ◽  
Maria Tuomi ◽  
Anu Eskelinen

AbstractPlant communities worldwide show varied responses to nutrient enrichment—including shifts in species identity, decreased diversity, and changes in functional trait composition—but the factors determining community recovery after the cessation of nutrient addition remain uncertain. We manipulated nutrient levels in a tundra community for 6 years of nutrient addition followed by 8 years of recovery. We examined how community recovery was mediated by traits related to plant resource-use strategy and plant ability to modify their environment. Overall, we observed persistent effects of fertilization on plant communities. We found that plants with fast-growing traits, including higher specific leaf area, taller stature and lower foliar C:N, were more likely to show a persistent increase in fertilized plots than control plots, maintaining significantly higher cover in fertilized plots 8 years after cessation of fertilization. Additionally, although graminoids responded most strongly to the initial fertilization treatment, forb species were more vulnerable to fertilization effects in the long-term, showing persistent decline and no recovery in 8 years. Finally, these persistent fertilization effects were accompanied by modified environmental conditions, including persistent increases in litter depth and soil phosphorous and lower soil C:N. Our results demonstrate the potential for lasting effects of nutrient enrichment in nutrient-limited systems and identify species traits related to rapid growth and nutrient-use efficiency as the main predictors of the persistence of nutrient enrichment effects. These findings highlight the usefulness of trait-based approach for understanding the persistent feedbacks of nutrient enrichment, plant dynamics, and niche construction via litter and nutrient build-up.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Markku Larjavaara ◽  
Xiancheng Lu ◽  
Xia Chen ◽  
Mikko Vastaranta

Abstract Background Understanding how warming influence above-ground biomass in the world’s forests is necessary for quantifying future global carbon budgets. A climate-driven decrease in future carbon stocks could dangerously strengthen climate change. Empirical methods for studying the temperature response of forests have important limitations, and modelling is needed to provide another perspective. Here we evaluate the impact of rising air temperature on the future above-ground biomass of old-growth forests using a model that explains well the observed current variation in the above-ground biomass over the humid lowland areas of the world based on monthly air temperature. Results Applying this model to the monthly air temperature data for 1970–2000 and monthly air temperature projections for 2081–2100, we found that the above-ground biomass of old-growth forests is expected to decrease everywhere in the humid lowland areas except boreal regions. The temperature-driven decrease is estimated at 41% in the tropics and at 29% globally. Conclusions Our findings suggest that rising temperatures impact the above-ground biomass of old-growth forests dramatically. However, this impact could be mitigated by fertilization effects of increasing carbon dioxide concentration in the atmosphere and nitrogen deposition.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2028
Author(s):  
Bojana Brozović ◽  
Irena Jug ◽  
Danijel Jug ◽  
Bojan Stipešević ◽  
Marija Ravlić ◽  
...  

Biochar, a carbon-rich material, is highlighted to improve soil fertility, simultaneously mitigating climate change by carbon sequestration. Combined with mineral fertilizer, it can increase weediness, the major source of yield loss in agricultural production. Research with biochar was conducted in Eastern Croatia in 2016, with the aim to investigate the influence of biochar and mineral fertilizer on weed infestation and winter wheat yield. Field experiments were set up as a split-plot where biochar (B) was the main factor and fertilization was the sub factor. The main treatments were: B0 (control without biochar), B1-5 t ha−1, B2-10 t ha−1 and B3-15 t ha−1. Fertilization sublevels were F0) without fertilizer and F1) optimal dose of fertilizer. Weediness was determined by counting and measuring aboveground biomass. The treatments with the greatest effect on weediness were B3 and F1 in the winter wheat tillering stage. In the winter wheat ripening stage, treatment B3 obtained the highest weediness and F1 significantly reduced weed density. Biochar treatment B3 increased winter wheat yield by 77% in relation to the control. The application of biochar combined with fertilization affected the level of weediness depending on agroecological conditions, but with a significant increase in yield.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1363
Author(s):  
Jason Kelley ◽  
John A. (Tony) Trofymow ◽  
Juha M. Metsaranta ◽  
Cosmin N. Filipescu ◽  
Christopher Bone

The authors wish to make the following corrections to their paper [...]


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1084
Author(s):  
Antonio Martínez Cortizas ◽  
Lourdes López-Merino ◽  
Noemí Silva-Sánchez ◽  
Jenny K Sjöström ◽  
Malin E Kylander

The mineral content of peat has received little attention until the last few decades, when peat cores have been increasingly used to study past dust deposition. Paleodust deposition is commonly reconstructed through elemental datasets, which are used to infer deposition rates, storminess patterns, mineral composition, source identification, and fertilization effects. To date, only a few studies have directly analyzed the mineralogy (by XRD and SEM) and particle size of peat mineral matter, and the conducted studies have usually been constrained by the need to remove a large amount of organic matter, which risks altering the mineral component. One alternative is to use quick, nondestructive techniques, such as FTIR-ATR, that require little sample preparation. In this study, we analyzed by FTIR-ATR both the bulk peat and ash fractions of a sequence taken in a minerogenic mire that covered a wide inorganic matter content range (6%–57%). Aided by principal component analysis on transposed IR spectral data, we were able to identify the main minerals in bulk peat and ash, quartz, mica (likely muscovite), K feldspar (likely microcline), and plagioclase (likely anorthite), which are consistent with the local geology of the mire catchment. Changes in mineral composition during the last ca. 2800 years were coeval with previously reconstructed environmental changes using the same core. Our results suggest that FTIR-ATR has great potential to investigate peat mineral matter and the processes that drive its compositional change.


Sign in / Sign up

Export Citation Format

Share Document