transgenic barley
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 9)

H-INDEX

30
(FIVE YEARS 1)

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1370
Author(s):  
Dilrukshi S. K. Nagahatenna ◽  
Jingwen Tiong ◽  
Everard J. Edwards ◽  
Peter Langridge ◽  
Ryan Whitford

Ferrochelatase (FC) is the terminal enzyme of heme biosynthesis. In photosynthetic organisms studied so far, there is evidence for two FC isoforms, which are encoded by two genes (FC1 and FC2). Previous studies suggest that these two genes are required for the production of two physiologically distinct heme pools with only FC2-derived heme involved in photosynthesis. We characterised two FCs in barley (Hordeum vulgare L.). The two HvFC isoforms share a common catalytic domain, but HvFC2 additionally contains a C-terminal chlorophyll a/b binding (CAB) domain. Both HvFCs are highly expressed in photosynthetic tissues, with HvFC1 transcripts also being abundant in non-photosynthetic tissues. To determine whether these isoforms differentially affect photosynthesis, transgenic barley ectopically overexpressing HvFC1 and HvFC2 were generated and evaluated for photosynthetic performance. In each case, transgenics exhibited improved photosynthetic rate (Asat), stomatal conductance (gs) and carboxylation efficiency (CE), showing that both FC1 and FC2 play important roles in photosynthesis. Our finding that modified FC expression can improve photosynthesis up to ~13% under controlled growth conditions now requires further research to determine if this can be translated to improved yield performance under field conditions.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 918
Author(s):  
Ludmila Ohnoutková ◽  
Tomáš Vlčko

Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.


2020 ◽  
Vol 21 (4) ◽  
pp. 1320
Author(s):  
Bingbing Luo ◽  
Man Xu ◽  
Limei Zhao ◽  
Peng Xie ◽  
Yi Chen ◽  
...  

Improving nitrogen use efficiency (NUE) is very important for crops throughout the world. Rice mainly utilizes ammonium as an N source, but it also has four NRT2 genes involved in nitrate transport. The OsNRT2.3b transporter is important for maintaining cellular pH under mixed N supplies. Overexpression of this transporter driven by a ubiquitin promoter in rice greatly improved yield and NUE. This strategy for improving the NUE of crops may also be important for other cereals such as wheat and barley, which also face the challenges of nutrient uptake balance. To test this idea, we constructed transgenic barley lines overexpressing OsNRT2.3b. These transgenic barley lines overexpressing the rice transporter exhibited improved growth, yield, and NUE. We demonstrated that NRT2 family members and the partner protein HvNAR2.3 were also up-regulated by nitrate treatment (0.2 mM) in the transgenic lines. This suggests that the expression of OsNRT2.3b and other HvNRT2 family members were all up-regulated in the transgenic barley to increase the efficiency of N uptake and usage. We also compared the ubiquitin (Ubi) and a phloem-specific (RSs1) promoter-driven expression of OsNRT2.3b. The Ubi promoter failed to improve nutrient uptake balance, whereas the RSs1 promoter succeed in increasing the N, P, and Fe uptake balance. The nutrient uptake enhancement did not include Mn and Mg. Surprisingly, we found that the choice of promoter influenced the barley phenotype, not only increasing NUE and grain yield, but also improving nutrient uptake balance.


Authorea ◽  
2020 ◽  
Author(s):  
Anuj Poonia ◽  
Sumit Mishra ◽  
Parul Sirohi ◽  
Reeku Chaudhary ◽  
Hugo Germain ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 203 ◽  
Author(s):  
Zelalem Eshetu Bekalu ◽  
Claus Krogh Madsen ◽  
Giuseppe Dionisio ◽  
Inger Bæksted Holme ◽  
Lise Nistrup Jørgensen ◽  
...  

Fusarium head blight (FHB) causes substantial losses of yield and quality in grains, both in the field and in post-harvest storage. To date, adequate natural genetic resistance is not available for the control of FHB. This study reports the cloning and overexpression of a barley (Hordeum vulgare L.) antifungal gene, nepenthesin 1 (HvNEP-1), in the endosperm of barley grains. Transgenic barley lines overexpressing HvNEP-1 substantially reduced FHB severity and disease progression after inoculation with Fusarium graminearum or Fusarium culmorum. The transgenic barley also showed reduced accumulation of the mycotoxin deoxynivalenol (DON) in grain, far below the minimum value allowable for food. Semi-field evaluation of four HvNEP-1 transgenic lines revealed substantial reduction of FHB severity and progression as compared with the control H. vulgare cultivar Golden promise (GP) plants. Our study demonstrated the utility of HvNEP-1 for the control of FHB in barley, and possibly other grains such as wheat and maize.


2020 ◽  
Vol 71 (9) ◽  
pp. 2796-2807 ◽  
Author(s):  
Carmen Escudero-Martinez ◽  
Patricia A Rodriguez ◽  
Shan Liu ◽  
Pablo A Santos ◽  
Jennifer Stephens ◽  
...  

Abstract Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While ‘omics’ approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi–barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant–aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.


2019 ◽  
Author(s):  
Carmen Escudero-Martinez ◽  
Patricia A. Rodriguez ◽  
Pablo A. Santos ◽  
Jennifer Stephens ◽  
Jorunn I.B. Bos

AbstractAphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While “omics”-approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extended efforts to characterize aphid effectors with regards to their role in promoting susceptibility to the R. padi-barley interaction. We selected 3 R. padi effectors based on sequences similarity to previously characterized M. persicae effectors and assessed their subcellular localisation, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant-aphid interactions, indicating this effector enhances susceptibility by suppressing plant defences in barley. Our data suggests that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.


2019 ◽  
Author(s):  
Jitka Viktorova ◽  
Barbora Klcova ◽  
Katerina Rehorova ◽  
Tomas Vlcko ◽  
Lucie Stankova ◽  
...  

SummaryAlthough many genetic manipulations of crops providing biofortified or safer food have been prepared, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. An Agrobacterium–mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generations were evaluated by molecular methods.Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF). Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity interactions, which was tested through monitoring barley natural virus pathogen – host interactions – the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. Our findings provide a new perspective which could help to evaluate the safety of products from genetically modified crops.


2018 ◽  
Vol 17 (11) ◽  
pp. 2492-2500 ◽  
Author(s):  
Pavel Cejnar ◽  
Ludmila Ohnoutková ◽  
Jan Ripl ◽  
Tomáš Vlčko ◽  
Jiban Kumar Kundu

Sign in / Sign up

Export Citation Format

Share Document