degradome sequencing
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 176 ◽  
pp. 114422
Author(s):  
Yongqi Li ◽  
Taili Nie ◽  
Meng Zhang ◽  
Xuexian Zhang ◽  
Kashif Shahzad ◽  
...  

2022 ◽  
Vol 291 ◽  
pp. 110557
Author(s):  
Zhuang Wen ◽  
Yi Hong ◽  
Zhilang Qiu ◽  
Kun Yang ◽  
Qiandong Hou ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 246
Author(s):  
Bin Tong ◽  
Yusun Shi ◽  
Aaron Ntambiyukuri ◽  
Xia Li ◽  
Jie Zhan ◽  
...  

Peanut is one of the most important oil crops in the world. In China, the peanut is highly produced in its southern part, in which the arable land is dominated by acid soil. At present, miRNAs have been identified in stress response, but their roles and mechanisms are not clear, and no miRNA studies have been found related to aluminum (Al)-induced programmed cell death (PCD). In the present study, transcriptomics, sRNAs, and degradome analysis in the root tips of two peanut cultivars ZH2 (Al-sensitive, S) and 99-1507 (Al-tolerant, T) were carried out. Here, we generated a comprehensive resource focused on identifying key regulatory miRNA-target circuits that regulate PCD under Al stress. Through deep sequencing, 2284 miRNAs were identified and 147 miRNAs were differentially expressed under Al stress. Furthermore, 19237 target genes of 749 miRNAs were validated by degradome sequencing. GO and KEGG analyses of differential miRNA targets showed that the pathways of synthesis and degradation of ketone bodies, citrate cycle (TCA cycle), and peroxisome were responded to Al stress. The combined analysis of the degradome data sets revealed 89 miRNA-mRNA interactions that may regulate PCD under Al stress. Ubiquitination may be involved in Al-induced PCD in peanut. The regulatory networks were constructed based on the differentially expressed miRNAs and their targets related to PCD. Our results will provide a useful platform to research on PCD induced by Al and new insights into the genetic engineering for plant stress response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiye Peng ◽  
Na Song ◽  
Wei Li ◽  
Mingxiong Yan ◽  
Chenting Huang ◽  
...  

Rice blast caused by Magnaporthe oryzae is one of the most important diseases that seriously threaten rice production. Brachypodium distachyon is a grass species closely related to grain crops, such as rice, barley, and wheat, and has become a new model plant of Gramineae. In this study, 15 small RNA samples were sequenced to examine the dynamic changes in microRNA (miRNA) expression in B. distachyon infected by M. oryzae at 0, 24, and 48 h after inoculation. We identified 432 conserved miRNAs and 288 predicted candidate miRNAs in B. distachyon. Additionally, there were 7 and 19 differentially expressed miRNAs at 24 and 48 h post-inoculation, respectively. Furthermore, using degradome sequencing, we identified 2,126 genes as targets for 308 miRNAs; using quantitative real-time PCR (qRT-PCR), we validated five miRNA/target regulatory units involved in B. distachyon–M. oryzae interactions. Moreover, using co-transformation technology, we demonstrated that BdNAC21 was negatively regulated by miR164c. This study provides a new approach for identifying resistance genes in B. distachyon by mining the miRNA regulatory network of host–pathogen interactions.


2021 ◽  
Vol 22 (18) ◽  
pp. 10154
Author(s):  
Tengfei Shen ◽  
Mengxuan Xu ◽  
Haoran Qi ◽  
Yuanheng Feng ◽  
Zhangqi Yang ◽  
...  

Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species.


2021 ◽  
Vol 46 (3) ◽  
Author(s):  
Bin Wu ◽  
Shanshan Jiang ◽  
Mei Zhang ◽  
Xia Guo ◽  
Shengji Wang ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Haoxuan Li ◽  
Aixuan Li ◽  
Wei Shen ◽  
Nenghui Ye ◽  
Guanqun Wang ◽  
...  

AbstractAlternative splicing is a widespread phenomenon, which generates multiple isoforms of the gene product. Reproductive development is the key process for crop production. Although numerous forms of alternative splicing have been identified in model plants, large-scale study of alternative splicing dynamics during reproductive development in rice has not been conducted. Here, we investigated alternative splicing of reproductive development of young panicles (YP), unfertilized florets (UF) and fertilized florets (F) in rice using direct RNA sequencing, small RNA sequencing, and degradome sequencing. We identified a total of 35,317 alternative splicing (AS) events, among which 67.2% splicing events were identified as novel alternative splicing events. Intron retention (IR) was the most abundant alternative splicing subtype. Splicing factors that differentially expressed and alternatively spliced could result in global alternative splicing. Global analysis of miRNAs-targets prediction revealed that alternative spliced transcripts affected miRNAs’ targets during development. Degradome sequencing detected only 6.8% of the differentially alternative splicing transcripts, suggesting a productive transcripts generation during development. In addition, alternative splicing isoforms of Co-like, a transcription factor, interacted with Casein kinase 1-like protein HD1 (CKI) examined in luciferase assay, which could modulate normal male-floral organs development and flowering time. These results reveal that alternative splicing is intensely associated with developmental stages, and a high complexity of gene regulation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Roshan Regmi ◽  
Toby E. Newman ◽  
Lars G. Kamphuis ◽  
Mark C. Derbyshire

Abstract Background Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. Results We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5′-RACE and RT-qPCR. Conclusions The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Shi ◽  
Wei Jiao ◽  
Lan Yun ◽  
Zhiqiang Zhang ◽  
Xiujuan Zhang ◽  
...  

Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica (M. ruthenica) is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, microRNAs (miRNAs), and key miRNA-target pairs in M. ruthenica under drought and rewatering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed in three test conditions (CK: control, DS: plants under drought stress, and RW: plants rewatering after drought stress). The degradome sequencing (AllenScore < 4) analysis revealed that 104 miRNAs (11 novel and 93 conserved miRNAs) were identified with 263 target transcripts, forming 296 miRNA-target pairs in three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21, 18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.


Sign in / Sign up

Export Citation Format

Share Document