cr content
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 102)

H-INDEX

26
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Zhetao Yuan ◽  
Satoru Kobayashi

Phase equilibria among δ-Fe, γ-Fe, and Fe2M phases in the Fe-Cr-M (M: Hf, Ta) ternary systems were determined using bulk alloys heat-treated at high temperatures. The final goal of this study is to develop novel ferritic heat resistant steels strengthened by precipitation of Fe2M phase on the eutectoid type reaction path: δ → γ + Fe2M. The phases present in heat-treated samples were identified by microstructural characterization and X-ray diffraction pattern analysis. The chemical compositions of the phases were analyzed by energy dispersive spectroscopy. A pseudo-eutectoid trough (δ → γ + Fe2M) exists at ~1220 °C at a Hf content of 0.1% and at ~1130 °C at a Ta content of 0.6% on the vertical section at a Cr content of 9.5% in each ternary system, respectively. A thermodynamic calculation with a database that reflects reported binary phase diagrams and the present study indicates that an increase in the Cr content decreases the temperature and the Hf/Ta contents of the pseudo-eutectoid troughs. The determined phase equilibria suggest that the supersaturation of Hf/Ta for the formation of γ phase is higher in the Hf doped system than in the Ta doped system, which is probably an origin of a much slower kinetics of precipitation on the eutectoid path in the latter system.


2021 ◽  
pp. 1-32
Author(s):  
Magdalena Zielińska-Dawidziak ◽  
Magdalena Czlapka-Matyasik ◽  
Zofia Wojciechowska ◽  
Jędrzej Proch ◽  
Przemysław Niedzielski

Abstract Although the children malnutrition in Madagascar and the environmental pollution of this country has been widely discussed, there is no research on the differences in toxic elements accumulation in human body in dependence on nutritional status of Malagasy. Nine elements concentration (Al, As, Cd, Cr, Hg, Ni, Pb, Sn and Sb) was determined in scalp hair of 103 schoolgirls (8–15 years old), living in two areas: urban - close to Antananarivo (UR) and rural Berevo region (RU). Samples were analyzed by an inductively coupled plasma-optical emission spectrometer. The nutritional status was evaluated by Cole’s Index. Underweight was related to higher accumulation of Al, Cd, and Cr in the hair girls, and more common among girls living in RU than UR region (42% vs 28%). Two-factor analysis of variance showed differences in the Al and Cr content in the girls’ hair depending both on their place of residence and nutritional status. This indicates additional consequence of malnutrition to the girls development and health.


Vacuum ◽  
2021 ◽  
Vol 194 ◽  
pp. 110591
Author(s):  
Min Guo ◽  
Zhenxing Fan ◽  
Wei Fu ◽  
Qian Wang ◽  
Shenpeng Hu ◽  
...  
Keyword(s):  

Author(s):  
Huihui Zhang ◽  
Lezheng Huang ◽  
Zhen Yang ◽  
Jie Chen ◽  
Yanjia Liu ◽  
...  

Abstract Excellent resistance to steam oxidation is a key required property for heat-resistant alloys used in next-generation fossil power plants. In order to clarify the degradation mechanism of Ni-Fe-Cr alloys in high temperature steam, four kinds of Ni-Fe-Cr model alloys with various Cr content were prepared and their long-term steam oxidation were investigated at 650 oC and 700 oC. The microstructure and composition of oxide scales were characterized by SEM equipped with EDS, and the oxide phases were identified by XRD. The results showed significant dependence of temperature and Cr content in alloys on the oxidation kinetics, cross-section morphology and elemental section-distribution. For Ni-Fe-Cr alloys with low Cr contents (12~16 wt.%), the increase of temperature made the oxide scale change from breakaway scale morphology (nodule-crater microstructure with external exfoliation) to protective scale morphology (uniform layer and internal oxidation). For Ni-Fe-Cr alloy with 18wt.% Cr, the effect of temperature was greatly reduced. The oxidation mechanism was discussed from the perspectives of selective oxidation and the effect of alloying elements.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022088
Author(s):  
Wenqing Jia ◽  
Xiangbing Liu ◽  
Minyu Fan ◽  
Chaoliang Xu ◽  
Yuanfei Li ◽  
...  

Abstract The ferrite plays an important role in key component materials for nuclear power plant. The study was performed on ferritic alloys with various Cr content ranging from 10 to 38wt%. The Vickers-hardness and mechanical test results indicate that the high Cr content will cause a hardening and strengthening effect on the ferrite steel. Meanwhile, it can be concluded that the ferritic alloy suffers a reduction of toughness and a failure mode transition from ductile to brittle fracture with the increasing Cr content from the SEM fractography analysis.


2021 ◽  

<p>Chromium is a common heavy metal pollutant found in industrial wastewaters which may pollute agricultural soils through groundwater and watering. Phytoremediation is an economical and highly applicable method for removal of pollutants from agricultural soils. This research was carried out for the removal of hexavalent chromium (Cr (VI)) contamination from the soil with the phytoremediation method. For this purpose, only 30 mg kg-1 hexavalent chromium (Cr (VI) as Chromium CrO3, only 10 mL bacteria Rhodobacter capsulatus DSM1710 and chromium plus bacteria applied to the pots and Malabar spinach (Basella alba L.) grown in the pots. At the end of experiment the results showed that side branching, leaf width, plant dry weights were the highest agro-morphological traits when bacteria were applied to chromium polluted soil. Some macro and micro nutrient elements which are essential for plant nutrition were analyzed (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn). Among them, N, P, Fe, Cu, Mn and Zn were found to be statistically significant at the level of 5%. The Cr content of Malabar spinach in control soil was 0.31mgkg-1, but it was 2.33mgkg-1 when the soil was contaminated with Cr at the end of experiment. Moreover, when bacteria were additionally applied the Cr content increased to 4.02 mgkg-1 of Malabar spinach. Chromium pollution antagonistically affected both some nutrient element (P, K, Ca; Mg) and some heavy metals (Fe, Cu, Zn, Mn) in the soil. This study shows that phytoremediation can be used to remove the soil pollution caused by containing high hexavalent chromium. For this reason, the nitrogen fixing bacterium Rhodobacter capsulatus and the hyperaccumulator Malabar spinach plant can be used. It is the first study where Malabar spinach was used a hyperaccumulator plant for chromium pollution in the soils.</p>


2021 ◽  
Vol 2044 (1) ◽  
pp. 012089
Author(s):  
Yongqi Wang ◽  
Anmin Li ◽  
Zihao Yuan ◽  
Huirong Yang ◽  
Shuang Feng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document