steel plate shear wall
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 83)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 189 ◽  
pp. 107067
Author(s):  
Zi-Qin Jiang ◽  
Tian Yan ◽  
Ai-Lin Zhang ◽  
Lei Su ◽  
Cun-Jie Shen

Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 469-482
Author(s):  
Ji-Ke Tan ◽  
Mei-Ni Su ◽  
Yu-Hang Wang ◽  
Kang Wang ◽  
Yun-Qi Cao ◽  
...  

2022 ◽  
Vol 250 ◽  
pp. 113458
Author(s):  
Yujie Yu ◽  
Siwen Lin ◽  
Fengtao Zhao ◽  
Peifeng Tian ◽  
Lizhong Jiang

2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2021 ◽  
Vol 920 (1) ◽  
pp. 012033
Author(s):  
M F M Fisol ◽  
R A Samat ◽  
S A Bakar

Abstract Shear Plate Shear Wall (SPSW) is a lateral force resisting system that is usually used in high seismic regions. Opening can be accommodated by using coupled steel plate shear wall (CSPSW) where two or more SPSWs are placed adjacently and are connected by coupling beams. Maximum displacement, shear load capacity and energy dissipation are affected by the dimension of the coupling beams. The construction cost of the building can be reduced vastly by optimizing the size of the coupling beams where the capability of CSPSW to resist the earthquake is maximized. Thus, the objective of this study is to determine the behaviour of maximum displacement, shear load capacity and energy dissipation of the CSPSW when the width, depth and length of the coupling beams are varied. Fourteen CSPSW models were analysed by ABAQUS software, where the models were subjected to lateral cyclic loading as accordance to ATC24. Maximum displacement of the CSPSW was not affected by the dimensions of the coupling beams. Shear load capacity was increased as either the width or the depth of the coupling beam was increased, and achieved its maximum value when the length of the coupling beam was 1000 mm. The optimum width, depth and length of the coupling beam to maximize the energy dissipation of the CSPSW models were 200 mm, 1000 mm and 1000 mm, respectively.


2021 ◽  
pp. 265-305
Author(s):  
Farzad Hejazi ◽  
Hojjat Mohammadi Esfahani

Sign in / Sign up

Export Citation Format

Share Document