tectonic model
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 71)

H-INDEX

53
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Thomas Rossetter

ABSTRACT In this paper, I use Thomas S. Kuhn’s model of scientific change to frame a brief, broad-brushed biographical sketch of the career of Warren B. Hamilton. I argue that Hamilton’s career can usefully be interpreted as encompassing a full “Kuhn cycle,” from a period of crisis in his early work, to one of normal science in midcareer, and back to something resembling crisis in his later research. Hamilton entered the field around mid-twentieth century when earth science can plausibly be described as being in a period of crisis. The then dominant fixist paradigm was facing an increasing number of difficulties, an alternative mobilist paradigm was being developed, and Hamilton played an important role in its development. The formulation of plate tectonics in the 1960s saw the overthrow of the fixist paradigm. This inaugurated a new phase of normal science as scientists worked within the new paradigm, refining it and applying it to different regions and various geological phenomena. Hamilton’s midcareer work fits largely into this category. Later, as the details of the plate-tectonic model became articulated more fully, and several of what Hamilton perceived as weakly supported conjectures became incorporated into the paradigm, problems began again to accumulate, and earth science, in Hamilton’s estimation, entered a new period of crisis. Radically new frameworks were now required, and Hamilton’s later work was dedicated principally to developing and articulating these frameworks and to criticizing mainstream views.


2021 ◽  
Author(s):  
Tatyana Aleksandrovna Yurkina ◽  
German Romanovich Gataulin

Executive Summary This article deals with the necessity the re-interpret seismic data at mature fields and is based on the field data located in the territory of the Greater Caucasus. The field was discovered back in the Soviet Union (1935).


2021 ◽  
Vol 62 (10) ◽  
pp. 1089-1106
Author(s):  
A.B. Vrevskii

Abstract —In the northern Ladoga area, the age of the Sortavala Group rocks in the southeast of the Raahe–Ladoga zone of junction of the epi-Archean Fenno-Karelian Craton and the Paleoproterozoic Svecofennian province, their relationship with dome granitoids, the age of the provenances, and the time of metamorphic processes were estimated. The study was focused on the Nd isotope composition of rocks, the geochemical and isotope-geochronological parameters of zircon from the granite-gneisses of the Kirjavalakhti dome, the basal graywackes of the lower unit and the trachytes of the middle unit of the Sortavala Group, and the plagio- and diorite-porphyry dikes cutting the volcanosedimentary units of this group. The new isotope-geochemical data show a Neoarchean age of the granitoids of the Kirjavalakhti dome (2695 ± 13 Ma) and their juvenile nature (εNd(T) = +1.5). The granitoids underwent tectonometamorphic transformations (rheomorphism) in the Paleoproterozoic (Sumian) (2.50–2.45 Ga), which are recorded in the U–Th–Pb isotope system of the rims of the ancient cores of zircon crystals. The volcanosedimentary complex of the Sortavala Group formed on the heterogeneous polychronous (3.10–2.46 Ga) continental crust of the epi-Archean Fenno-Karelian Craton. With regard to the errors in determination of the age of clastic zircon, the minimum concordant U–Th–Pb ages of 1940–1990 Ma of detrital zircon from volcanomictic graywackes of the Pitkyaranta Formation can be taken as the upper age bound of terrigenous rocks, which agrees with the maximum age of the Sortavala Group rocks estimated from the U–Th–Pb (SIMS) age of 1922 ± 11 Ma of the Tervaoya diorites (Matrenichev et al., 2006). According to the proposed new tectonic model, the accumulation of the volcanosedimentary complex of the Sortavala Group, its metamorphism, erosion, and overlapping by the Ladoga Group turbidites had already occurred in the pericratonic part of the epi-Archean Fenno-Karelian Craton by the time of the Svecofennian continent–island arc collision, subduction, and formation of bimodal volcanoplutonic complexes of the young Pyhäsalmi island arcs and felsic volcanics of the Savo schist belt (1920–1890 Ma).


2021 ◽  
Author(s):  
Nelson Boniface ◽  
Tatsuki Tsujimori

ABSTRACT Records of high-pressure/low-temperature (HP-LT) metamorphic interfaces are not common in Precambrian orogens. It should be noted that the association of HP-LT metamorphic interfaces and strongly deformed ocean plate stratigraphy that form accretionary prisms between trenches and magmatic arcs are recognized as hallmark signatures of modern plate tectonics. In East Africa (Tanzania), the Paleoproterozoic Ubendian-Usagaran Belt records a HP-LT metamorphic interface that we consider as a centerpiece in reviewing the description of tectonic units of the Ubendian-Usagaran Belt and defining a new tectonic model. Our new U-Pb zircon age and the interpretations from existing data reveal an age between 1920 and 1890 Ma from the kyanite bearing eclogites. This establishment adds to the information of already known HP-LT metamorphic events at 2000 Ma, 1890–1860 Ma, and 590–520 Ma from the Ubendian-Usagaran Belt. Arc–back-arc signatures from eclogites imply that their mafic protoliths were probably eroded from arc basalt above a subduction zone and were channeled into a subduction zone as mélanges and got metamorphosed. The Ubendian-Usagaran events also record rifting, arc and back-arc magmatism, collisional, and hydrothermal events that preceded or followed HP-LT tectonic events. Our new tectonic subdivision of the Ubendian Belt is described as: (1) the western Ubendian Corridor, mainly composed of two Proterozoic suture zones (subduction at 2000, 1920–1890, Ma and 590–500 Ma) in the Ufipa and Nyika Terranes; (2) the central Ubendian Corridor, predominated by metamorphosed mafic-ultramafic rocks in the Ubende, Mbozi, and Upangwa Terranes that include the 1890–1860 Ma eclogites with mid-ocean ridge basalt affinity in the Ubende Terrane; and (3) the eastern Ubendian Corridor (the Katuma and Lupa Terranes), characterized by reworked Archean crust.


Author(s):  
Wolfgang Dörr ◽  
Eckhardt Stein ◽  
Ferdinand Kirchner ◽  
Henri Paul Meinaß ◽  
Felicitás Velledits

AbstractU–Pb age spectra of detrital zircons related to the East European Platform could be traced in paragneiss through the whole Mid-German-Crystalline Zone (Variscides, Central Europe) from the Odenwald via the Spessart to the Ruhla crystalline forming an exotic unit between Armorica and Laurussia. The depositional ages of the paragneiss are defined by the youngest age of the detrital zircons and the oldest intrusion ages as Ordovician to Silurian. The Ediacaran dominated age spectrum of detrital zircons from the paragneiss of the East Odenwald suggests the latter to be derived from the shelf of the East European Platform (Baltica), which was influenced by the 1.5 Ga old detritus delivered from a giant intrusion (Mazury granitoid, Poland). The detrital zircon age spectrum of the lower Palaeozoic paragneiss of the East Odenwald and sandstone of the northern Holy Cross Mountains are identical. The pure Sveconorwegian spectrum of the lower Palaeozoic quartzite from the Spessart, (Kirchner and Albert Int J Earth Sci 2020) and the Ruhla (Zeh and Gerdes Gondwana Res 17:254–263, 2010) could be sourced from Bornholm and southern Sweden. A U–Pb age spectrum with 88% Palaeozoic detrital zircons from a volcano-sedimentary rock of the East Odenwald is interpreted to be derived from a Silurian magmatic arc (46%), which was probably generated during the drift of the Mid-German-Crystalline Zone micro-continent to the south. A tentative plate tectonic model of Mid-German-Crystalline Zone is presented taking into account (a) the East European Platform related age spectra of the detrital zircons (b) the Ordovician to Silurian depositional age of the metasediments (c) the Silurian and Early Devonian intrusion age of the plutonic and volcanic rocks and (d) the U–Pb ages of the Middle Devonian high-grade metamorphism. The East European Platform-related part of the Mid-German-Crystalline Zone is interpreted as a micro-continent, which drifted through the Rheic Ocean to the south and collided with the Saxothuringian (Armorican Terrane Assemblage) during the Early Devonian. Such large-scale tectonic transport from the northern continent to the southern continent is also known from the SW Iberia, where Laurussia-related metasediments of the Rheic suture zone are explained by a large scale tectonic escape (Braid et al. J Geol Soc Lond 168:383–392, 2011).


2021 ◽  
Vol 12 (3) ◽  
pp. 652-661
Author(s):  
S. G. Skublov ◽  
A. V. Berezin ◽  
L. I. Salimgaraeva

The comments are given on the article authored by M.V. Mints and K.A. Dokukina – The Belomorian Eclogite Province (Eastern Fennoscandian Shield, Russia): Meso-Neoarchean or Late Paleoproterozoic? (Geodynamics & Tectonophysics 2020, 11 (1), 151–200). The Belomorian (White Sea) province of the Fennoscandia Shield is a key site for studying the tectonics of the early periods because numerous Precambrian eclogites have been found there. It was not anticipated, but the problem of age determinations of the eclogite metamorphism of gabbroids in the White Sea mobile belt has turned out to be extremely relevant not only for this region, but also for the Precambrian geology in general. The reason is that a number of authors determine the age of eclogites as Archean (2.7–2.8 Ga), which makes the White Sea mobile belt the only example of the Archean eclogite metamorphism in the world and, therefore, the only dated evidence in support of the plate tectonic model of the evolution of the Earth’s crust at the earliest stage of its formation. The article consistently provides a critical analysis of the arguments put forward by the supporters of the Archean age of the eclogites of the White Sea mobile belt. Special emphasis is made on the isotope geochronological and geochemical features of the composition of zircons from eclogite samples, as well as on the phase and chemical compositions and distribution patterns of mineral inclusions. Considering the age of eclogite metamorphism that led to the formation of eclogites in the White Sea mobile belt, we propose our interpretation based on a set of independent isotope geochemical dating methods, including the local U- Pb method for heterogeneous zircons with magmatic cores and eclogite rims, the Lu-Hf and Sm-Nd methods for the minerals of eclogite paragenesis (garnet and omphacite). And this age interpretation is fundamentally different from the one described in the commented article: all the three methods independently determine the eclogite metamorphism as Paleoproterozoic and yield the same age of circa 1.9 Ga. According to our data, the eclogites of the White Sea mobile belt are among the most ancient high-pressure rocks, their reliably established age of metamorphism is circa 1.9 Ga, and the age of the magmatic protolith is the range of 2.2–2.9 Ga.


2021 ◽  
Author(s):  
Nelson Boniface ◽  
Tatsuki Tsujimori
Keyword(s):  

Conference abstracts of Boniface and Tsujimori (2014, 2016).


2021 ◽  
Author(s):  
Nelson Boniface ◽  
Tatsuki Tsujimori
Keyword(s):  

Conference abstracts of Boniface and Tsujimori (2014, 2016).


Sign in / Sign up

Export Citation Format

Share Document