lectin receptor
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 133)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Anthony Onoja ◽  
Nicola Picchiotti ◽  
Chiara Fallerini ◽  
Margherita Baldassarri ◽  
Francesca Fava ◽  
...  

Abstract We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with training of multiple supervised classifiers, to predict severity on the basis of screened features. Feature importance analysis from tree-based models allowed to identify a handful of 16 variants with highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with good accuracy (ACC=81.88%; ROC_AUC=96%; MCC=61.55%). Principal Component Analysis (PCA) and clustering of patients on important variants orthogonally identified two groups of individuals with a higher fraction of severe cases. Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response, such as JAK-STAT, Cytokine, Interleukin, and C-type lectin receptor signaling. It also identified additional processes cross-talking with immune pathways, such as GPCR signalling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as “Respiratory or thoracic disease”, confirming their link with COVID-19 severity outcome. Taken together, our analysis suggests that curated genetic information can be effectively integrated along with other patient clinical covariates to forecast COVID-19 disease severity and dissect the underlying host genetic mechanisms for personalized medicine treatments.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Inhye Park ◽  
Michael E. Goddard ◽  
Jennifer E. Cole ◽  
Natacha Zanin ◽  
Leo-Pekka Lyytikäinen ◽  
...  

AbstractMacrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease.


Author(s):  
Lydia Bellmann ◽  
Helen Strandt ◽  
Claudia Zelle‐Rieser ◽  
Daniela Ortner ◽  
Christoph H. Tripp ◽  
...  

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ingrida Vendele ◽  
Ten Feizi ◽  
Maria Spyrou ◽  
Mark Stappers ◽  
Gordon Brown ◽  
...  

The primary recognition event between a fungal pathogen and the immune system normally involves the engagement of a pattern recognition receptor with specific components of the cell wall. However, the cell wall is a complex three dimensional structure whose composition changes rapidly in accordance with environmental stimuli. Therefore it is important to know what is the precise nature of the primary recognition event, how many events occur to activate the immune response and how these recognition events are affected by changes in cell wall architecture, cellular morphogenesis and physiological adaptation of the pathogen to specific niches in the human body. We address this fundamental question using four soluble immune C-Type lectin receptor-probes which recognize specific mannans and β-1,3 glucan in the cell wall. We use these C-type lectin probes to demonstrate that mannan epitopes are differentially distributed in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune reactivity of fungal cell surfaces did not correlate with relatedness of different fungal species, and mannan-detecting receptor-probes discriminated between cell surface mannans generated by the same fungus growing under different conditions. These studies demonstrate that mannan-epitopes within fungal cell walls are differentially distributed and dynamically expressed as the fungus adapted to microenvironments that would be encountered in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Ghazizadeh ◽  
Ali Neshastehriz ◽  
Ali Dehghani Firoozabadi ◽  
Mohammad Kaji Yazdi ◽  
Esmail Saievar-Iranizad ◽  
...  

AbstractIt has been necessary to use methods that can detect the specificity of a virus during virus screening. In this study, we use a dual platform to identify any spiked virus and specific SARS-CoV-2 antigen, sequentially. We introduce a natural bed-receptor surface as Microparticle Vesicle-Galactins1 (MV-gal1) with the ability of glycan binding to screen every spiked virus. MV are the native vesicles which may have the gal-1 receptor. Gal-1 is the one of lectin receptor which can bind to glycan. After dropping the MV-gal1 on the SCPE/GNP, the sensor is turned on due to the increased electrochemical exchange with [Fe(CN)6]−3/−4 probe. Dropping the viral particles of SARS-CoV-2 cause to turn off the sensor with covering the sugar bond (early screening). Then, with the addition of Au/Antibody-SARS-CoV-2 on the MV-gal1@SARS-CoV-2 Antigen, the sensor is turned on again due to the electrochemical amplifier of AuNP (specific detection).For the first time, our sensor has the capacity of screening of any spike virus, and the specific detection of COVID-19 (LOD: 4.57 × 102 copies/mL) by using the natural bed-receptor and a specific antibody in the point of care test.


2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Tomonori Kaifu ◽  
Rikio Yabe ◽  
Takumi Maruhashi ◽  
Soo-Hyun Chung ◽  
Hiroaki Tateno ◽  
...  

Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor with a carbohydrate recognition domain and an immunoreceptor tyrosine-based inhibitory motif. Previously, we showed that Dcir−/− mice spontaneously develop autoimmune enthesitis and sialadenitis, and also develop metabolic bone abnormalities. However, the ligands for DCIR functionality remain to be elucidated. Here we showed that DCIR is expressed on osteoclasts and DCs and binds to an asialo-biantennary N-glycan(s) (NA2) on bone cells and myeloid cells. Osteoclastogenesis was enhanced in Dcir−/− cells, and NA2 inhibited osteoclastogenesis. Neuraminidase treatment, which exposes excess NA2 by removing the terminal sialic acid of N-glycans, suppressed osteoclastogenesis and DC function. Neuraminidase treatment of mice ameliorated collagen-induced arthritis and experimental autoimmune encephalomyelitis in a DCIR-dependent manner, due to suppression of antigen presentation by DCs. These results suggest that DCIR activity is regulated by the modification of the terminal sialylation of biantennary N-glycans, and this interaction is important for the control of both autoimmune and bone metabolic diseases.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Mengzhu Zeng ◽  
Bowen Wan ◽  
Lei Wang ◽  
Zhiyuan Chen ◽  
Yachun Lin ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nihong Lu ◽  
Yongrui Yang ◽  
Xiaofei Li ◽  
Jie Li ◽  
Jie Cheng ◽  
...  

Abstract Introduction Piperlongumine (PL) is a bioactive alkaloid and medicinal compound of piperamide isolated from the long pepper (Piper longum Linn). It has demonstrated bactericidal action against Mycobacterium tuberculosis (MTB), the cause of pulmonary tuberculosis; nevertheless, immunomodulatory activity had not been identified for it in MTB-triggered granulomatous inflammation. This study investigated if piperlongumine could inhibit such inflammation. Material and Methods Mycobacterium tuberculosis strain H37Rv was subjected to a broth microdilution assay. Piperlongumine at 5, 15, and 25 μg/mL, 0.2% dimethyl sulphoxide as control or 4 μM of dexamethasone were tested in vitro on MH-S murine alveolar macrophages. BALB/c mice were orally administered PL at 50, 100 and 150 mg/kg b.w. after trehalose-6,6-dimycolate (TDM) stimulation. Chemokine and cytokine concentrations were determined in lung supernatants. Flow cytometry and Western blot analysis were performed to determine phosphorylated spleen tyrosine kinase (Syk), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. Results Piperlongumine inhibited inflammatory mediators and adherence of lymphocyte function-associated antigen 1 to MH-S cells following TDM activation. It also improved macrophage clearance of MTB. In TDM-stimulated MH-S cells, PL significantly influenced the macrophage inducible Ca2+-dependent lectin receptor (Mincle)-Syk-ERK signalling pathway. Oral dosing of PL effectively suppressed the development of pulmonary granulomas and inflammatory reactions in the TDM-elicited mouse granuloma model. Conclusion PL as an inhibitor of MTB-triggered granulomatous inflammation may be an effective complementary treatment for mycobacterial infection.


Sign in / Sign up

Export Citation Format

Share Document