chiral compounds
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 108)

H-INDEX

39
(FIVE YEARS 7)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Sandra Ardevines ◽  
Eugenia Marqués-López ◽  
Raquel P. Herrera

Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and sustainable alternative since List and MacMillan pioneering contributions were published in 2000. These works established the term asymmetric organocatalysis to label this area of research, which has grown exponentially over the last two decades. Since then, the scientific community has attended to the discovery of a plethora of organic reactions and transformations carried out with excellent results in terms of both reactivity and enantioselectivity. Looking back to earlier times, we can find in the literature a few examples where small organic molecules and some natural products could act as effective catalysts. However, with the birth of this type of catalysis, new chemical architectures based on amines, thioureas, squaramides, cinchona alkaloids, quaternary ammonium salts, carbenes, guanidines and phosphoric acids, among many others, have been developed. These organocatalysts have provided a broad range of activation modes that allow privileged interactions between catalysts and substrates for the preparation of compounds with high added value in an enantioselective way. Here, we briefly cover the history of this chemistry, from our point of view, including our beginnings, how the field has evolved during these years of research, and the road ahead.


Author(s):  
Jin-Bao Peng ◽  
Xin-Lian Liu ◽  
Lin Li ◽  
Xiao-Feng Wu

AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.


Author(s):  
Guilherme S Caleffi ◽  
Felipe C Demidoff ◽  
Carmen Najera ◽  
Paulo Roberto Ribeiro Costa

Asymmetric hydrogenation (AH) and asymmetric transfer hydrogenation (ATH) are versatile synthetic methodologies widely employed in the preparation of chiral compounds. In this review, we explore the applications of AH and...


Nanoscale ◽  
2022 ◽  
Author(s):  
Jianjian Zhao ◽  
Bo Wang ◽  
Aiyou Hao ◽  
Pengyao Xing

Flexible regulation of chirality and handedness of chiral functional materials and quantitative sensing of natural chiral compounds remain considerable challenges. Herein, achiral fluorescent 1-pyrenecarboxylic acid-benzimidazole derivative (PBI) was synthesized, of...


Synthesis ◽  
2021 ◽  
Author(s):  
Bo Ding ◽  
Qilin Xue ◽  
Shihu Jia ◽  
Hong-Gang Cheng ◽  
Qianghui Zhou

The kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.


2021 ◽  
Vol 11 (23) ◽  
pp. 11375
Author(s):  
Alessandro Belardini ◽  
Emilija Petronijevic ◽  
Ramin Ghahri ◽  
Daniele Rocco ◽  
Fabiana Pandolfi ◽  
...  

Chirality, the absence of mirror symmetry, governs behavior in most biologically important molecules, thus making the chiral recognition of great importance in the pharmaceutical and agrochemical industries, as well as medicine. Chiral molecules can be characterized by means of optical experiments based on chiro-optical excitation of molecules. Specifically, chiral absorptive materials differently absorb left- and right-circular polarized light, i.e., they possess circular dichroism (CD). Unfortunately, the natural CD of most molecules is very low and lies in the ultraviolet range. Fluorescence-detected CD is a fast and sensitive tool for investigation of chiral molecules which emit light; ultralow CD in absorption can be detected as the difference in emission. In this work, we perform fluorescence-detected CD on novel chiral amide compounds, designed specifically for visible green emission; we synthesize two enantiomeric fluorescent compounds using low-cost starting compounds and easy purification. We investigate different solutions of the enantiomers at different concentrations, and we show that the fluorescence of the intrinsically chiral compounds depends on the polarization state of the penetrating light, which is absorbed at 400 nm and emits across the green wavelength range. We believe that these compounds can be coupled with plasmonic nanostructures, which further shows promise in applications regarding chiral sensing or chiral emission.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yun Li ◽  
Bo Zhao ◽  
Jin-Peng Xue ◽  
Jing Xie ◽  
Zi-Shuo Yao ◽  
...  

AbstractNumerous single crystals that exhibit single-crystal-to-single-crystal (SCSC) transformations have been reported, and some of them show great promise for application to advanced adsorption materials, magnetic switches, and smart actuators. However, the development of single crystals with super-adaptive crystal lattices capable of huge and reversible structural change remains a great challenge. In this study, we report a ZnII complex that undergoes giant SCSC transformation induced by a two-step thermal elimination of ethylene glycol chelating ligands. Although the structural change is exceptionally large (50% volume shrinkage and 36% weight loss), the single-crystal nature of the complex persists because of the multiple strong hydrogen bonds between the constituent molecules. This allows the reversible zero-dimensional to one-dimension and further to three-dimensional structural changes to be fully characterized by single-crystal X-ray diffraction analyses. The elimination of chelating ligands induces a chiral interconversion in the molecules that manifests as a centric-chiral-polar symmetric variation of the single crystal. The study not only presents a unique material, featuring both a periodic crystal lattice and gel-like super-ductility, but also reveals a possible solid-state reaction method for preparing chiral compounds via the elimination of chelating ligands.


2021 ◽  
Vol 17 ◽  
pp. 2729-2764
Author(s):  
Alemayehu Gashaw Woldegiorgis ◽  
Xufeng Lin

In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.


Synthesis ◽  
2021 ◽  
Author(s):  
Mingliang Li ◽  
Jun WANG

Transition metal-catalyzed direct asymmetric C−H functionalization has become a powerful strategy to synthesize complex chiral molecules. Recently, catalytic enantioselective C−H arylation has attracted great interest from organic chemists to construct aryl-substituted chiral compounds. In this short review, we intend to highlight the recent advancements in asymmetric C−H arylation from 2019 to now, including enantioselective C(sp2)−H arylation to construct axial or planar chiral compounds, and enantioselective C(sp3)−H arylation to introduce central chirality via desymmetrization of methyl group or direct methylene C–H activation. These processes proceed with palladium, rhodium, iridium, nickel or copper catalyst, and utilize aryl halides, boron or diazo derivatives as arylation reagents.


Sign in / Sign up

Export Citation Format

Share Document