articulated objects
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 14)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Fabio Strazzeri ◽  
Carme Torras

AbstractForty years ago the notion of configuration space (C-space) revolutionised robot motion planning for rigid and articulated objects. Despite great progress, handling deformable materials has remained elusive because of their infinite-dimensional shape-state space. Finding low-complexity representations has become a pressing research goal. This work tries to make a tiny step in this direction by proposing a state representation for textiles relying on the C-space of some distinctive points. A stratification of the configuration space for n points in the cloth is derived from that of the flag manifold, and topological techniques to determine adjacencies in manipulation-centred state graphs are developed. Their algorithmic implementation permits obtaining cloth state–space representations of different granularities and tailored to particular purposes. An example of their usage to distinguish between cloth states having different manipulation affordances is provided. Suggestions on how the proposed state graphs can serve as a common ground to link the perception, planning and manipulation of textiles are also made.


2021 ◽  
Author(s):  
Pablo Frank-Bolton ◽  
Roxana Leontie ◽  
Evan Drumwright ◽  
Rahul Simha
Keyword(s):  

Author(s):  
RICCARDO BERTOLUCCI ◽  
ALESSIO CAPITANELLI ◽  
CARMINE DODARO ◽  
NICOLA LEONE ◽  
MARCO MARATEA ◽  
...  

Abstract The manipulation of articulated objects is of primary importance in Robotics and can be considered as one of the most complex manipulation tasks. Traditionally, this problem has been tackled by developing ad hoc approaches, which lack flexibility and portability. In this paper, we present a framework based on answer set programming (ASP) for the automated manipulation of articulated objects in a robot control architecture. In particular, ASP is employed for representing the configuration of the articulated object for checking the consistency of such representation in the knowledge base and for generating the sequence of manipulation actions. The framework is exemplified and validated on the Baxter dual-arm manipulator in the first, simple scenario. Then, we extend such scenario to improve the overall setup accuracy and to introduce a few constraints in robot actions execution to enforce their feasibility. The extended scenario entails a high number of possible actions that can be fruitfully combined together. Therefore, we exploit macro actions from automated planning in order to provide more effective plans. We validate the overall framework in the extended scenario, thereby confirming the applicability of ASP also in more realistic Robotics settings and showing the usefulness of macro actions for the robot-based manipulation of articulated objects.


Author(s):  
Yeshasvi Tirupachuri ◽  
Silvio Traversaro ◽  
Francesco Nori ◽  
Daniele Pucci

2019 ◽  
Vol 4 (30) ◽  
pp. eaaw4523 ◽  
Author(s):  
Karthik Desingh ◽  
Shiyang Lu ◽  
Anthony Opipari ◽  
Odest Chadwicke Jenkins

Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks.


Sign in / Sign up

Export Citation Format

Share Document