stop codons
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 60)

H-INDEX

37
(FIVE YEARS 4)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
Angelo Pavesi ◽  
Fabio Romerio

Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus.


Author(s):  
Zhao‐Yang Zhang ◽  
Dan‐Ni Liao ◽  
Yu‐Xin Ma ◽  
Bin Jia ◽  
Ying‐Jin Yuan
Keyword(s):  

2021 ◽  
Author(s):  
Susanne Bornelöv ◽  
Benjamin Czech ◽  
Gregory J Hannon

PIWI-interacting RNAs (piRNAs) are small RNAs required to recognize and silence transposable elements. The 5' ends of mature piRNAs are defined through cleavage of long precursor transcripts, primarily by Zucchini (Zuc). Zuc-dependent cleavage typically occurs immediately upstream of a uridine. However, Zuc lacks sequence preference in vitro, pointing towards additional unknown specificity factors. We examined murine piRNAs and revealed a strong and specific enrichment of three sequences (UAA, UAG, UGA)—corresponding to stop codons—at piRNA 5' ends. This pattern was robust across 101 analysed samples. Stop codon sequences were also enriched immediately after piRNA processing intermediates, reflecting their Zuc-dependent tail-to-head arrangement. Further analysis suggested that Zuc has an in vivo cleavage preference at stop codon sequences. Finally, this enrichment was conserved across mammals and possibly further. Our work provides new insights into Zuc-dependent cleavage and may point to a previously unrecognized connection between piRNA biogenesis and the translational machinery.


2021 ◽  
Author(s):  
Anne Stringer ◽  
Carol Smith ◽  
Kyle Mangano ◽  
Joseph T. Wade

Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Ribosome profiling has been used to infer the existence of small proteins by detecting the translation of the corresponding open reading frames (ORFs). Detection of translated short ORFs by ribosome profiling can be improved by treating cells with drugs that stall ribosomes at specific codons. Here, we combine the analysis of ribosome profiling data for Escherichia coli cells treated with antibiotics that stall ribosomes at either start or stop codons. Thus, we identify ribosome-occupied start and stop codons with high sensitivity for ∼400 novel putative ORFs. The newly discovered ORFs are mostly short, with 365 encoding proteins of <51 amino acids. We validate translation of several selected short ORFs, and show that many likely encode unstable proteins. Moreover, we present evidence that most of the newly identified short ORFs are not under purifying selection, suggesting they do not impact cell fitness, although a small subset have the hallmarks of functional ORFs. IMPORTANCE Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Recent studies have discovered small proteins by mapping the location of translating ribosomes on RNA using a technique known as ribosome profiling. Discovery of translated sORFs using ribosome profiling can be improved by treating cells with drugs that trap initiating ribosomes. Here, we show that combining these data with equivalent data for cells treated with a drug that stalls terminating ribosomes facilitates the discovery of small proteins. We use this approach to discover 365 putative genes that encode small proteins in Escherichia coli .


ZooKeys ◽  
2021 ◽  
Vol 1061 ◽  
pp. 57-73
Author(s):  
Renyi Zhang ◽  
Qian Tang ◽  
Lei Deng

Mitochondria are important organelles with independent genetic material of eukaryotic organisms. In this study, we sequenced and analyzed the complete mitogenome of a small cyprinid fish, Microphysogobio elongatus (Yao &amp; Yang, 1977). The mitogenome of M. elongatus is a typical circular molecule of 16,612 bp in length containing 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a 930 bp control region. The base composition of the M. elongatus mitogenome is 30.8% A, 26.1% T, 16.7% G, and 26.4% C. All PCGs used the standard ATG start codon with the exception of COI. Six PCGs terminate with complete stop codons, whereas seven PCGs (ND2, COII, ATPase 6, COIII, ND3, ND4, and Cyt b) terminate with incomplete (T or TA) stop codons. All tRNA genes exhibited typical cloverleaf secondary structures with the exception of tRNASer(AGY), for which the dihydrouridine arm forms a simple loop. The phylogenetic analysis divided the subfamily Gobioninae in three clades with relatively robust support, and that Microphysogobio is not a monophyletic group. The complete mitogenome of M. elongatus provides a valuable resource for future studies about molecular phylogeny and/or population genetics of Microphysogobio.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Águeda-Pinto ◽  
Luís Q. Alves ◽  
Fabiana Neves ◽  
Grant McFadden ◽  
Bertram L. Jacobs ◽  
...  

Programmed cell death is a vital process in the life cycle of organisms. Necroptosis, an evolutionary form of programmed necrosis, contributes to the innate immune response by killing pathogen-infected cells. This virus-host interaction pathway is organized around two components: the receptor-interacting protein kinase 3 (RIPK3), which recruits and phosphorylates the mixed lineage kinase-like protein (MLKL), inducing cellular plasma membrane rupture and cell death. Critically, the presence of necroptotic inhibitors in viral genomes validates necroptosis as an important host defense mechanism. Here, we show, counterintuitively, that in different mammalian lineages, central components of necroptosis, such as RIPK3 and MLKL, are deleted or display inactivating mutations. Frameshifts or premature stop codons are observed in all the studied species of cetaceans and leporids. In carnivores’ genomes, the MLKL gene is deleted, while in a small number of species from afrotheria and rodentia premature stop codons are observed in RIPK3 and/or MLKL. Interestingly, we also found a strong correlation between the disruption of necroptosis in leporids and cetaceans and the absence of the N-terminal domain of E3-like homologs (responsible for necroptosis inhibition) in their naturally infecting poxviruses. Overall, our study provides the first comprehensive picture of the molecular evolution of necroptosis in mammals. The loss of necroptosis multiple times during mammalian evolution highlights the importance of gene/pathway loss for species adaptation and suggests that necroptosis is not required for normal mammalian development. Moreover, this study highlights a co-evolutionary relationship between poxviruses and their hosts, emphasizing the role of host adaptation in shaping virus evolution.


2021 ◽  
Author(s):  
Adair L Borges ◽  
Yue Clare Lou ◽  
Rohan Sachdeva ◽  
Basem Al-Shayeb ◽  
Alexander L. Jaffe ◽  
...  

The genetic code is a highly conserved feature of life. However, some alternative genetic codes use reassigned stop codons to code for amino acids. Here, we survey stop codon recoding across bacteriophages (phages) in human and animal gut microbiomes. We find that stop codon recoding has evolved in diverse clades of phages predicted to infect hosts that use the standard code. We provide evidence for an evolutionary path towards recoding involving reduction in the frequency of TGA and TAG stop codons due to low GC content, followed by acquisition of suppressor tRNAs and the emergence of recoded stop codons in structural and lysis genes. In analyses of two distinct lineages of recoded virulent phages, we find that lysis-related genes are uniquely biased towards use of recoded stop codons. This convergence supports the inference that stop codon recoding is a strategy to regulate the expression of late stage genes and control lysis timing. Interestingly, we identified prophages with recoded stop codons integrated into genomes of bacteria that use standard code, and hypothesize that recoding may control the lytic-lysogenic switch. Alternative coding has evolved many times, often in closely related lineages, indicating that genetic code is plastic in bacteriophages and adaptive recoding can occur over very short evolutionary timescales.


2021 ◽  
Author(s):  
Karole N D'Orazio ◽  
Laura N. Lessen ◽  
Anthony J. Veltri ◽  
Zachary Neiman ◽  
Miguel E. Pacheco ◽  
...  

The decay of messenger RNA with a premature termination codon (PTC) by nonsense mediated decay (NMD) is an important regulatory pathway for eukaryotes and an essential pathway in mammals. NMD is typically triggered by the ribosome terminating at a stop codon that is aberrantly distant from the poly-A tail. Here, we use a fluorescence screen to identify factors involved in NMD in S. cerevisiae . In addition to the known NMD factors, including the entire UPF family (UPF1, UPF2 and UPF3), as well as NMD4 and EBS1 , we identify factors known to function in post-termination recycling and characterize their contribution to NMD. We then use a series of modified reporter constructs that block both elongating and scanning ribosomes downstream of stop codons and demonstrate that a deficiency in recycling of 80S ribosomes or 40S subunits stabilizes NMD substrates. These observations in S. cerevisiae expand on recently reported data in mammals indicating that the 60S recycling factor ABCE1 is important for NMD (1,2) by showing that increased activities of both elongating and scanning ribosomes (80S or 40S) in the 3’UTR correlate with a loss of NMD.


2021 ◽  
Author(s):  
Janet I Collett ◽  
Stephen R Pearce

Two dimensional graphical dotplotting is adopted to identify sequence elements and their variants in lengths of DNA of up to 10 kb. Named GCAT for identification of precisely defined short sequences and their variants, its use complements the precise matching of many computational programs, including BLAST. Short reiterated search sequences are entered in the Y axis of the dotplot program to be matched at their identical and near identical sites in a sequence of interest entered in the X axis. The result is a barcode like representation of the identified sequence elements along the X axis of the dotplot. Alignments of searches and sequence landmarks provide visualization of composition and juxtapositions. The method is described here by example of characterizations of three distinctive sequences available in the annotated Drosophila melanogaster reference genome (www.flybase.org): the Jonah 99C gene region, the transcript of Dipeptidase B and the transposable element roo. Surprising observations emerging from these explorations include in frame STOP codons in the large exonic intron of Dip-B, high A content of the replicative strand of roo as TE example and similarities of its ORF and the large intron of Dip B.


Sign in / Sign up

Export Citation Format

Share Document