dual active bridge
Recently Published Documents


TOTAL DOCUMENTS

1350
(FIVE YEARS 674)

H-INDEX

41
(FIVE YEARS 11)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Pierpaolo Dini ◽  
Sergio Saponara

In this paper, a model-based approach for the design of a bidirectional onboard charger (OBC) device for modern hybrid and fully electrified vehicles is proposed. The main objective and contribution of our study is to incorporate in the same simulation environment both modelling of electrical and thermal behaviour of switching devices. This is because most (if not all) of the studies in the literature present analyses of thermal behaviour based on the use of FEM (Finite Element Method) SWs, which in fact require the definition of complicated models based on partial derivative equations. The simulation of such accurate models is computationally expensive and, therefore, cannot be incorporated into the same virtual environment in which the circuit equations are solved. This requires long waiting times and also means that electrical and thermal models do not interact with each other, limiting the completeness of the analysis in the design phase. As a case study, we take as reference the architecture of a modular bidirectional single-phase OBC, consisting of a Totem Pole-type AC/DC converter with Power Factor Correction (PFC) followed by a Dual Active Bridge (DAB) type DC/DC converter. Specifically, we consider a 7 kW OBC, for which its modules consist of switching devices made with modern 900 V GaN (Gallium Nitrade) and 1200 V SiC (Silicon Carbide) technologies, to achieve maximum performance and efficiency. We present a procedure for sizing and selecting electronic devices based on the analysis of behaviour through circuit models of the Totem Pole PFC and DAB converter in order to perform validation by using simulations that are as realistic as possible. The developed models are tested under various operating conditions of practical interest in order to validate the robustness of the implemented control algorithms under varying operating conditions. The validation of the models and control loops is also enhanced by an exhaustive robustness analysis of the parametric variations of the model with respect to the nominal case. All simulations obtained respect the operating limits of the selected devices and components, for which its characteristics are reported in data sheets both in terms of electrical and thermal behaviour.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8125
Author(s):  
Fei Teng ◽  
Dezheng Kong ◽  
Zixuan Cui ◽  
Yuan Qin ◽  
Zhenghang Hao ◽  
...  

As an important part of the DC micro-grid, DC solid-state transformers (DCSST) usually use a dual-loop control that combines the input equalization and output voltage loop. This strategy fails to ensure output equalization when the parameters of each dual active bridge (DAB) converter module are inconsistent, thus reducing the operational efficiency of the DCSST. To solve the above problems, a DCSST-balancing control strategy based on loop current suppression is presented. By fixing the phase-shifting angle within the bridge and adjusting the phase-shifting angle between bridges, the circulation current of each DAB converter module is reduced. Based on the double-loop control of the DAB, five controllers are nested outside each DAB submodule to achieve distributed control of the DCSST. The proposed control strategy can reduce the system circulation current with different circuit parameters of the submodules, ensure the balance of input voltage and output current of each submodule, and increase the robustness of the system. The simulation results verify the validity of the proposed method.


2021 ◽  
Author(s):  
Jiahao Sun ◽  
Lin Qiu ◽  
Xing Liu ◽  
Jien Ma ◽  
Youtong Fang ◽  
...  

Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 544-561
Author(s):  
Glauber de Freitas Lima ◽  
Boubakr Rahmani ◽  
Maud Rio ◽  
Yves Lembeye ◽  
Jean-Christophe Crebier

Power electronics converters are traditionally designed regarding efficiency, power density, cost, and reliability figures of merit. Today, with the extreme spread of power electronic applications in our modern societies, together with the earth limits in terms of materials resources, it is important to consider the ecological impact of the converter not only during its usage, but over its whole life cycle. This article introduces an eco-dimensioning methodology for analyzing and accounting for the energy consumption over the entire converter life. The analysis is applied on a small DC-DC converter considering the main components dual active bridge (DAB) converter. The planar transform is one of the key elements modeled in this article, including material and manufacturing conditions. The traditional and eco-dimensioning approaches are carried out and compared in order to emphasize the possible consequences on total energy cost.


2021 ◽  
Author(s):  
David Bundgen ◽  
Andre Thonnessen ◽  
Niklas Fritz ◽  
Tobias Kamp ◽  
Rik W. De Doncker

Author(s):  
Shiyuan Yin ◽  
Suman Debnath ◽  
Rafal Wojda ◽  
Phani Marthi ◽  
Maryam Saeedifard
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document