roof structure
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 138)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Taşkın Özkan ◽  
Norbert Pfeifer ◽  
Gudrun Styhler-Aydın ◽  
Georg Hochreiner ◽  
Ulrike Herbig ◽  
...  

We present a set of methods to improve the automation of the parametric 3D modeling of historic roof structures using terrestrial laser scanning (TLS) point clouds. The final product of the TLS point clouds consist of 3D representation of all objects, which were visible during the scanning, including structural elements, wooden walking ways and rails, roof cover and the ground; thus, a new method was applied to detect and exclude the roof cover points. On the interior roof points, a region-growing segmentation-based beam side face searching approach was extended with an additional method that splits complex segments into linear sub-segments. The presented workflow was conducted on an entire historic roof structure. The main target is to increase the automation of the modeling in the context of completeness. The number of manually counted beams served as reference to define a completeness ratio for results of automatically modeling beams. The analysis shows that this approach could increase the quantitative completeness of the full automatically generated 3D model of the roof structure from 29% to 63%.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Xiong ◽  
Dezhong Kong ◽  
Zhijie Wen ◽  
Guiyi Wu ◽  
Qinzhi Liu

AbstractAiming at the problem of coal face failure of lower coal seam under the influence of repeated mining in close coal seams, with the working face 17,101 as a background, the coal samples mechanics test clarified the strength characteristics of the coal face under repeated mining, through similar simulation experiments, the development of stable roof structure and surrounding rock cracks under repeated mining of close coal seams are further explored. And based on this, establish a coal face failure mechanics model to comprehensively analyze the influence of multiple roof structural instabilities on the stability of the coal face. Finally, numerical simulation is used to further supplement and verify the completeness and rationality of similar simulation experiment and theoretical analysis results. The results show that: affected by repeated mining disturbances, the cracks in the coal face are relatively developed, the strength of the coal body is reduced, and the coal face is more prone to failure under the same roof pressure; During the mining of coal seam 17#, the roofs of different layers above the stope form two kinds of "arch" structures and one kind of “voussoir beam” structure, and there are three different degrees of frequent roof pressure phenomenon, which is easy to cause coal face failure; Under repeated mining of close coal seams, the roof pressure acting on the coal face is not large. The main controlling factor of coal face failure is the strength of the coal body, and the form of coal face failure is mostly the shear failure of soft coal. The research results can provide a theoretical basis for coal face failure under similar conditions.


2022 ◽  
Author(s):  
Nicola Longarini ◽  
Pietro Giuseppe Crespi ◽  
Marco Zucca

Abstract Recent Italian earthquakes have shown the seismic vulnerability of many typical historical masonry churches characterized by one nave and wooden roofs. Under transverse earthquake the nave transverse response of this kind of churches can be influenced by the geometrical and material features. To increase the seismic performance, strengthening interventions aimed to pursue the global box-behavior by the realization of dissipative roof-structure represent a valid strategy especially for avoiding out-of-plane mechanisms. In this way, the roof structure must be able to represent a tool for the damped rocking of the perimeter walls. Cross-laminated timber panels (CLT) have been recently adopted as roof-diaphragm having shown valid ductile behavior in experimental tests, satisfying the conservative restoration criteria at the same time. In this paper, after a description of the numerical approach for the damped rocking mechanism for one nave configuration church, the effectiveness of different CLT based roof-diaphragms in the nave transverse response is investigated for four historical churches. The seismic responses are performed by comparative dynamic nonlinear analyses and the results are shown in terms of displacements and shear actions transferred to the façade. The influence of the geometrical features of the churches on the nave transversal response is deepened by sensitivity analyses with the aim to predict the displacements and shear variations under the same earthquake excitation.


Author(s):  
Wolfgang Seibel

AbstractAfter heavy snowfall, the skating rink of the city of Bad Reichenhall collapsed on 2 January 2006. Fifteen people, twelve children between the age of 7 and 15 and three mothers, were killed by the falling debris of the roof, 34 people were injured. Court trials came to the conclusion that the City of Bad Reichenhall, over a long period of time, had seriously neglected the maintenance of the hall despite clear indication of water ingress and related weak points in the roof structure. The Lord Mayor admitted before court to have purposefully obstructed the decision of the municipal parliament to renovate the hall since he had intended to have the hall dismantled anyway and to build a modern pastime and wellness center instead.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Fangjin Sun ◽  
Zhonghao Xu ◽  
Daming Zhang ◽  
Yanlu Wang

Rainfall is often accompanied by strong winds. The large-span roof structure has a low height, its surrounding turbulence is high, and the wind speed changes greatly. The effects of coaction of wind and rain on the roofs cannot be ignored. Wind-driven rain (WDR) is an oblique movement phenomenon of raindrops generated by wind flow. Four types of hyperbolic roofs, that is, square, rectangular, circular, and elliptical, are selected as the objective to study the wind-driven rain by CFD simulation. Effects of wind direction, wind speed, and rainfall intensity on the WDR are analyzed. Pressure distribution of four types of hyperbolic roofs under coaction of wind and rain is obtained. The results are compared with those from the wind action only. The roofs are partitioned to obtain the coaction of wind and rain pressure of the four large-span hyperbolic roofs with different shapes under the most unfavorable working conditions. The results show that the average pressure coefficient of the roof surface increases with the increase of wind speed and rainfall intensity. The reference value of the average pressure coefficient of wind-driven rain on the surface of the roof is given, which provides a reference basis for the design of wind-driven rain on similar hyperbolic roofs.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1438
Author(s):  
Anye Cao ◽  
Yaoqi Liu ◽  
Siqi Jiang ◽  
Qi Hao ◽  
Yujie Peng ◽  
...  

With the increase in coal mining depth, engineering geological conditions and the stress environment become more complex. Many rock bursts triggered by two combined faults have been observed in China, but the mechanism is not understood clearly. The focus of this research aims at investigating the influence of two combined faults on rock burst mechanisms. The six types of two combined faults were first introduced, and two cases were utilized to show the effects of two combined faults types on coal mining. The mechanical response of the numerical model with or without combined faults was compared, and a conceptual model was set up to explain the rock burst mechanism triggered by two combined faults. The influence of fault throw, dip, fault pillar width, and mining height on rock burst potential was analyzed. The main control factors of rock burst in six models that combined two faults were identified by an orthogonal experiment. Results show that six combinations of two faults can be identified, including stair-stepping fault, imbricate fault, graben fault, horst fault, back thrust fault, and ramp fault. The particular roof structure near the two combined faults mining preventing longwall face lateral abutment pressure from transferring to deep rock mass leads to stress concentration near the fault areas. Otherwise, a special roof structure causing the lower system stiffness of mining gives rise to the easier gathering of elastic energy in the coal pillars, which makes it easier to trigger a rock burst. There is a nonlinear relationship between fault parameters and static or dynamic load for graben faults mining. The longwall face has the highest rock burst risk when the fault throw is between 6 and 8 m, the fault dip is larger than 65°, the mining height is greater than 6 m, and the coal pillar width is less than 50 m. The stair-stepping, imbricate, horst, and ramp fault compared to the other fault types will produce higher dynamic load stress during longwall retreat. Fault pillar width is the most significant factor for different two combined faults, leading to the rise of static load stress and dynamic proneness.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 225
Author(s):  
Ahmad Ridwan ◽  
Nur Indah Mukhoyyaroh

Currently, the use of steel as a building construction has been widely used as the main material for building structures. Steel frames come in a variety of profiles and sizes. The use of steel frames can be adjusted to the type of construction to be built. From the results of the planning of the WF steel roof structure on the factory warehouse construction project in Pamekasan, it was obtained planning data: Gording using Profile C 125x50x40x4,5. Trekstang uses 8 mm diameter, Wind ties use 10mm diameter steel, Rafter uses WF 350x350x19x19 profile, column uses WF 350x350x19x19 profile, 8 pieces A325 bolts with 22 mm diameter, Hoist Crane Beam uses IWF Bulit-Up beam with 600x1144x18x22 profile, Base Plate uses a size of 500x500x8mm with a column of 600x600. 


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2397
Author(s):  
Rui Pan ◽  
Baofeng Zheng ◽  
Ying Qin

Nowadays, it is common to see large public buildings, e.g., stadiums, with some equipment or substructure suspended from the center of the roof. These substructures will tend to be larger and heavier the more gear is needed, which may have negative impacts on the dynamic performance of the roof structures. In this paper, to explore the dynamic response of a large-span roof structure with a suspended substructure, a real structure model is simplified into a two-degrees-of-freedom system. The essential consideration of nonlinear vibration is elaborated in the equations of motions. Approximate analytical solutions for free and forced vibrations are derived using perturbation methods, while numerical analysis is carried out to validate the solutions. The ratio of linear to nonlinear amplitude is proposed to represent the nonlinear effect of the primary structure, and the nonlinear effect, varying with structural parameters of frequency ratio, mass ratio, excitation ratio, and external force to the primary structure, is investigated. It is shown that internal resonance occurs when the structural frequency ratio is close to 1:2 and that secondary resonance takes place due to certain external excitations; internal resonance and secondary resonance will magnify the amplitude of the primary structure during vibration. Finally, a case of a designed practical dome with a suspended substructure is studied to verify the outcomes from the above research. According to these findings, some design proposals for this type of structure are provided.


Author(s):  
Bo Lu ◽  
Wen Zhao ◽  
Xi Du ◽  
Shengang Li ◽  
Yongping Guan ◽  
...  

A new pipe-roof construction method, the steel support cutting pipe method (SSCP), was proposed to improve the construction security and accuracy of pipe jacking as well as underground space usage. The pipe-roof method is one of the underground excavation methods which push multiple steel pipes into the soil, then connect the steel pipes horizontally to form a whole. The proposed structure’s failure mode and force characteristics were determined through theoretical analysis, and then its ultimate bearing capacity and influencing parameters were analyzed through laboratory experiments and numerical simulation. The research results show that the structure’s bearing capacity depends on the steel pipe’s buckling load; the structure’s failure mode is a result of the steel pipe’s buckling. The ultimate bearing capacity of the pipe-roof structure first increases and then decreases with the increase of the steel pipe chord height ratio. The ultimate bearing capacity reaches the maximum when the ratio is 0.33. In addition, the structure’s ultimate bearing capacity is positively related to the steel pipe wall thickness and the pipe section’s length. This can be obtained from the relationship curve showing that the steel pipe wall thickness should be selected according to the engineering requirements and that the pipe section’s length is preferably 2.3 times the diameter of the steel pipe in the construction design.


Sign in / Sign up

Export Citation Format

Share Document