uv photons
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 43)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
Vol 22 (24) ◽  
pp. 13436
Author(s):  
Evangelos Balanikas ◽  
Lara Martinez-Fernandez ◽  
Gérard Baldacchino ◽  
Dimitra Markovitsi

The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3′ or 5′ ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300–500 nm spectral domain.


2021 ◽  
Vol 923 (1) ◽  
pp. 24
Author(s):  
Nanase Harada ◽  
Sergio Martín ◽  
Jeffrey G. Mangum ◽  
Kazushi Sakamoto ◽  
Sebastien Muller ◽  
...  

Abstract Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with “superbubbles,” cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10–150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5754
Author(s):  
Maxime Royon ◽  
Francis Vocanson ◽  
Damien Jamon ◽  
François Royer ◽  
Emmanuel Marin ◽  
...  

In the present paper, we investigate how the optical and structural properties, in particular the observed photoluminescence (PL) of photocurable and organic-inorganic TiO2-SiO2 sol-gel films doped with Rhodamine 6G (R6G) are affected by γ-rays. For this, four luminescent films, firstly polymerized with UV photons (365 nm), were submitted to different accumulated doses of 50 kGy, 200 kGy, 500 kGy and 1 MGy while one sample was kept as a reference and unirradiated. The PL, recorded under excitations at 365 nm, 442 nm and 488 nm clearly evidences that a strong signal peaking at 564 nm is still largely present in the γ-irradiated samples. In addition, M-lines and Fourier-transform infrared (FTIR) spectroscopies are used to quantify the radiation induced refractive index variation and the chemical changes, respectively. Results show that a refractive index decrease of 7 × 10−3 at 633 nm is achieved at a 1 MGy accumulated dose while a photo-induced polymerization occurs, related to the consumption of CH=C, Si-OH and Si-O-CH3 groups to form Ti-O and Si-O bonds. All these results confirm that the host matrix (TiO2-SiO2) and R6G fluorophores successfully withstand the hard γ-ray exposure, opening the way to the use of this material for sensing applications in radiation-rich environments.


Author(s):  
Ikuru Iwata ◽  
Marcin Sawicki ◽  
Akio K Inoue ◽  
Masayuki Akiyama ◽  
Genoveva Micheva ◽  
...  

Abstract We use deep and wide imaging data from the CFHT Large Area U-band Deep Survey (CLAUDS) and the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) to constrain the ionizing radiation (Lyman Continuum; LyC) escape fraction from AGNs at z ∼ 3–4. For 94 AGNs with spectroscopic redshifts at 3.3 &lt; z &lt; 4.0, we use their U-band / i-band flux ratios to estimate LyC transmission of individual AGNs. The distribution of their LyC transmission shows values lower than the range of LyC transmission values for IGM of the same redshift range, which suggests that LyC escape fraction of AGNs at z &gt; 3.3 is considerably lower than unity in most cases. We do not find any trend in LyC transmission values depending on their UV luminosities. Based on the photometry of stacked images we find the average flux ratio of LyC and non-ionizing UV photons escaping from the objects (fLyC/fUV)out = 0.182 ± 0.043 for AGNs at 3.3 &lt; z &lt; 3.6, which corresponds to LyC escape fraction fesc = 0.303 ± 0.072 if we assume a fiducial intrinsic SED of AGN. Based on the estimated LyC escape fraction and the UV luminosity function of AGNs, we argue that UV-selected AGNs’ contribution to the LyC emissivity at the epoch is minor, although the size of their contribution largely depends on the shape of the UV luminosity function.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Jose M. Ramírez-Velásquez ◽  
Leonardo Di G. Sigalotti ◽  
Ruslan Gabbasov ◽  
Jaime Klapp ◽  
Ernesto Contreras

We investigate the non-isothermal Bondi accretion onto a supermassive black hole (SMBH) for the unexplored case when the adiabatic index is varied in the interval 1<γ≤1.66 and for the Paczyński–Wiita γ=5/3 regime, including the effects of X-ray heating and radiation force due to electron scattering and spectral lines. The X-ray/central object radiation is assumed to be isotropic, while the UV emission from the accretion disc is assumed to have an angular dependence. This allows us to build streamlines in any desired angular direction. The effects of both types of radiation on the accretion dynamics is evaluated with and without the effects of spectral line driving. Under line driving (and for the studied angles), when the UV flux dominates over the X-ray heating, with a fraction of UV photons going from 80% to 95%, and γ varies from 1.66 to 1.1, the inflow close to the gravitational source becomes more supersonic and the volume occupied by the supersonic inflow becomes larger. This property is also seen when this fraction goes from 50% to 80%. The underestimation of the Bondi radius close to the centre increases with increasing γ, while the central overestimation of the accretion rates decreases with increasing γ, for all the six studied cases.


Author(s):  
M. Romanello ◽  
N. Menci ◽  
M. Castellano

In this paper we investigate how the Reionization process is affected by early galaxy formation in different cosmological scenarios. We use a semi-analytic model with suppressed initial power spectra to obtain the UV Luminosity Function in thermal Warm Dark Matter and sterile neutrino cosmologies. We retrace the ionization history of intergalactic medium with hot stellar emission only, exploiting fixed and mass-dependent photons escape fraction (fesc). For each cosmology, we find an upper limit to fixed fesc, which guarantees the completion of the process at z&amp;lt;6.7. The analysis is tested with two limit hypothesis on high-z ionized hydrogen volume fraction, comparing our predictions with observational results. We then implement a blast-wave model, which explains the genesis of UV photons escape fraction in the context of feedback and co-evolution between galaxies and Active Galactic Nuclei. Including the AGNs contribution, we find that the neutral hydrogen ionization is almost complete at z&amp;lt;7, with a weak dependence on initial gaseous ionized fraction and accretion UV spectral slope.


Author(s):  
Kexun Chen ◽  
Olli E. Setala ◽  
Behrad Radfar ◽  
Udo Kroth ◽  
Ville Vahanissi ◽  
...  

Radiation ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 5-17
Author(s):  
Joël Daouk ◽  
Batoul Dhaini ◽  
Jérôme Petit ◽  
Céline Frochot ◽  
Muriel Barberi-Heyob ◽  
...  

Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results are appealing, but the existence of a true, lethal phototherapeutic effect is still controversial. In this article, we have reviewed previous original works dealing with Cerenkov-induced PDT (CR-PDT). Moreover, we propose a simple analytical equation resolution to demonstrate that Cerenkov light can potentially generate a photo-therapeutic effect, although most of the Cerenkov photons are emitted in the UV-B and UV-C domains. We suggest that CR-PDT and direct UV-tissue interaction act synergistically to yield the therapeutic effect observed in the literature. Moreover, adding a nanoscintillator in the photosensitizer vicinity would increase the PDT efficacy, as it will convert Cerenkov UV photons to light absorbed by the photosensitizer.


2020 ◽  
Vol 500 (1) ◽  
pp. 1188-1200
Author(s):  
Killian Leroux ◽  
Lahouari Krim

ABSTRACT Methanol, which is one of the most abundant organic molecules in the interstellar medium, plays an important role in the complex grain surface chemistry that is believed to be a source of many organic compounds. Under energetic processing such as ultraviolet (UV) photons or cosmic rays, methanol may decompose into CH4, CO2, CO, HCO, H2CO, CH3O and CH2OH, which in turn lead to complex organic molecules such as CH3OCHO, CHOCH2OH and HOCH2CH2OH through radical recombination reactions. However, although molecular oxygen and its detection, abundance and role in the interstellar medium have been the subject of many debates, few experiments on the oxidation of organic compounds have been carried out under interstellar conditions. The present study shows the behaviour of solid methanol when treated by UV light and thermal processing in oxygen-rich environments. Methanol has been irradiated in the absence and presence of O2 at different concentrations in order to study how oxidized complex organic molecules may form and also to investigate the O-insertion reaction in the C–H bound to form methanediol HOCH2OH through a CH3OH + O(1D) solid-state reaction. The adding of O2 in the thermal and photochemical reaction of solid methanol leads to the formation of O3, H2O and HO2, in addition to three main organics, HCOOH, CHOCHO and HOCH2OH. We show that in an O2-rich environment, species such as CO, CH4, HCO, CH3OH and CHOCH2OH are oxidized into CO2, CH3OH, HC(O)OO, HOCH2OH and CHOCHO, respectively, while HCOOH might be formed through the H2CO + O(3P) → (OH + HCO)cage → HCOOH hydrogen-abstraction reaction.


Sign in / Sign up

Export Citation Format

Share Document