alpine catchments
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 66)

H-INDEX

23
(FIVE YEARS 7)

Author(s):  
Ishfaq ◽  
Fan Zhang ◽  
Gowhar Meraj ◽  
Majid Farooq ◽  
Muhammad Muslim ◽  
...  

2021 ◽  
Author(s):  
Francesca Carletti ◽  
Adrien Michel ◽  
Francesca Casale ◽  
Daniele Bocchiola ◽  
Michael Lehning ◽  
...  

Abstract. This study compares the ability of two degree-day models (Poli-Hydro and a degree-day implementation of Alpine3D) and one full energy-balance melt model (Alpine3D) to predict the discharge on two partly glacierized Alpine catchments of different size and intensity of exploitation, under present conditions and climate change as projected at the end of the century. For present climate, the magnitude of snow melt predicted by Poli-Hydro is sensibly lower than the one predicted by the other melt schemes, and the melting season is delayed by one month. This difference can be explained by the combined effect of the reduced complexity of the melting scheme and the reduced computational temporal resolution. The degree-day implementation of Alpine3D reproduces a melt season closer to the one obtained with its full solver; in fact, the onset of the degree-day mode still depends upon the full energy-balance solver, thus not bringing any particular benefit in terms of inputs and computational load, unlike with Poli-Hydro. Under climate change conditions, Alpine3D is more sensitive than Poli-Hydro, reproducing discharge curves and volumes shifted by one month earlier as a consequence of the earlier onset of snow melt. Despite their benefits, the coarser temporal computational resolution and the fixed monthly degree-days of simpler melt models like Poli-Hydro make them controversial to use for climate change applications with respect to energy-balance ones. Nevertheless, under strong river regulation, the influence of calibration might even overshadow the benefits of a full energy-balance scheme.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3366
Author(s):  
Martin Kubáň ◽  
Juraj Parajka ◽  
Rui Tong ◽  
Isabella Pfeil ◽  
Mariette Vreugdenhil ◽  
...  

The role of soil moisture is widely accepted as a significant factor in the mass and energy balance of catchments as a controller in surface and subsurface runoff generation. The paper examines the potential of a new dataset based on advanced scatterometer satellite remote sensing of soil moisture (ASCAT) for multiple objective calibrations of a dual-layer, conceptual, semi-distributed hydrological model. The surface and root zone soil moisture indexes based on ASCAT data were implemented into calibration of the hydrological model. Improvements not only in the instrument specifications, i.e., better temporal and spatial sampling, but also in the higher radiometric accuracy and retrieval algorithm, were applied. The analysis was performed in 209 catchments situated in different physiographic and climate zones of Austria for the period 2007–2018. We validated the model for two validation periods. The results show that multiple objective calibrations have a substantial positive effect on constraining the model parameters. The combined use of soil moisture and discharges in the calibration improved the soil moisture simulation in more than 73% of the catchments, except for the catchments with higher forest cover percentages. Improvements also occurred in the runoff model efficiency, in more than 27% of the catchments, mostly in the watersheds with a lower mean elevation and a higher proportion of farming land use, as well as in the Alpine catchments where the runoff is not significantly influenced by snowmelt and glacier runoff.


Author(s):  
Robert G. Hilton ◽  
Jens M. Turowski ◽  
Matthew Winnick ◽  
Mathieu Dellinger ◽  
Patrick Schleppi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 25 (6) ◽  
pp. 3577-3594
Author(s):  
Regula Muelchi ◽  
Ole Rössler ◽  
Jan Schwanbeck ◽  
Rolf Weingartner ◽  
Olivia Martius

Abstract. Future changes in river runoff will impact many sectors such as agriculture, energy production, or ecosystems. Here, we study changes in the seasonality, frequency, and magnitude of moderate low and high flows and their time of emergence. The time of emergence indicates the timing of significant changes in the flow magnitudes. Daily runoff is simulated for 93 Swiss catchments for the period 1981–2099 under Representative Concentration Pathway 8.5 with 20 climate model chains from the most recent transient Swiss Climate Change Scenarios. In the present climate, annual low flows typically occur in the summer half-year in lower-lying catchments (<1500 m a.s.l.) and in the winter half-year in Alpine catchments (>1500 m a.s.l.). By the end of the 21st century, annual low flows are projected to occur in late summer and early autumn in most catchments. This indicates that decreasing precipitation and increasing evapotranspiration in summer and autumn exceed the water contributions from other processes such as snowmelt and glacier melt. In lower-lying catchments, the frequency of annual low flows increases, but their magnitude decreases and becomes more severe. In Alpine catchments, annual low flows occur less often and their magnitude increases. The magnitude of seasonal low flows is projected to decrease in the summer half-year in most catchments and to increase in the winter half-year in Alpine catchments. Early time of emergence is found for annual low flows in Alpine catchments in the 21st century due to early changes in low flows in the winter half-year. In lower-lying catchments, significant changes in low flows emerge later in the century. Annual high flows occur today in lower-lying catchments in the winter half-year and in Alpine catchments in the summer half-year. Climate change will change this seasonality mainly in Alpine catchments with a shift towards earlier seasonality in summer due to the reduced contribution of snowmelt and glacier melt in summer. Annual high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments. The magnitude of seasonal high flows in most catchments is projected to increase in the winter half-year and to decrease in the summer half-year. However, the climate model agreement on the sign of change in moderate high flows is weak.


2021 ◽  
Author(s):  
Eva Boisson ◽  
Bruno Wilhelm ◽  
Emmanuel Garnier ◽  
Alain Mélo ◽  
Sandrine Anquetin ◽  
...  

Abstract. In France, flooding is the most common and damaging natural hazard. Due to global warming, it is expected to globally exacerbate, and it could be even more pronounced in the European Alps that warm at a rate twice as high in the Northern Hemisphere. The Alps are densely populated, increasing exposure and vulnerability to flood hazard. To approach long-term evolutions of past flood occurrence and related socio-economic impacts in relation to changes in the flood risk components (i.e. hazard, exposure and vulnerability), the study of historical records is highly relevant. To this aim we analyze the newly constituted database of Historical Impacts of Floods in the Arve Valley (HIFAVa) located in French Northern Alps and starting in 1850. This database reports for the first-time flood occurrences and impacts in a well-documented Alpine catchment that encompasses both a hydrological and societal diversity. We analyze past impacts in regard to their characteristics and evolution in both time and space. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effect and/or increasing exposure of goods and people rather than hydrological changes. The analysis reveals that small mountain streams and particularly glacial streams caused more impacts (67 %) than the main river. While increase in heavy rainfall and ice melt are expected to enhance flood hazard in small Alpine catchments, this finding calls to pay a particular attention to flood risk assessment and management in small catchments.


2021 ◽  
Vol 25 (6) ◽  
pp. 3429-3453
Author(s):  
Sarah Hanus ◽  
Markus Hrachowitz ◽  
Harry Zekollari ◽  
Gerrit Schoups ◽  
Miren Vizcaino ◽  
...  

Abstract. Hydrological regimes of alpine catchments are expected to be strongly affected by climate change, mostly due to their dependence on snow and ice dynamics. While seasonal changes have been studied extensively, studies on changes in the timing and magnitude of annual extremes remain rare. This study investigates the effects of climate change on runoff patterns in six contrasting Alpine catchments in Austria using a process-based, semi-distributed hydrological model and projections from 14 regional and global climate model combinations for two representative concentration pathways, namely RCP4.5 and RCP8.5. The study catchments represent a spectrum of different hydrological regimes, from pluvial–nival to nivo-glacial, as well as distinct topographies and land forms, characterizing different elevation zones across the eastern Alps to provide a comprehensive picture of future runoff changes. The climate projections are used to model river runoff in 2071–2100, which are then compared to the 1981–2010 reference period for all study catchments. Changes in the timing and magnitude of annual maximum and minimum flows, as well as in monthly runoff and snowmelt, are quantified and analyzed. Our results indicate a substantial shift to earlier occurrences in annual maximum flows by 9 to 31 d and an extension of the potential flood season by 1 to 3 months for high-elevation catchments. For low-elevation catchments, changes in the timing of annual maximum flows are less pronounced. Magnitudes of annual maximum flows are likely to increase by 2 %–18 % under RCP4.5, while no clear changes are projected for four catchments under RCP8.5. The latter is caused by a pronounced increase in evaporation and decrease in snowmelt contributions, which offset increases in precipitation. In the future, minimum annual runoff will occur 13–31 d earlier in the winter months for high-elevation catchments, whereas for low-elevation catchments a shift from winter to autumn by about 15–100 d is projected, with generally larger changes for RCP8.5. While all catchments show an increase in mean magnitude of minimum flows by 7–30% under RCP4.5, this is only the case for four catchments under RCP8.5. Our results suggest a relationship between the elevation of catchments and changes in the timing of annual maximum and minimum flows. For the magnitude of the extreme flows, a relationship is found between catchment elevation and annual minimum flows, whereas this relationship is lacking between elevation and annual maximum flow.


2021 ◽  
Author(s):  
Roberta Perico ◽  
Philip Brunner ◽  
Paolo Frattini ◽  
Giovanni Battista Crosta

2021 ◽  
Author(s):  
Rui Tong ◽  
Juraj Parajka ◽  
Borbála Széles ◽  
Isabella Pfeil ◽  
Mariette Vreugdenhil ◽  
...  

Abstract. The recent advances in remote sensing provide opportunities for more reliably estimating the parameters of conceptual hydrologic models. However, the question of whether and to what extent the use of satellite data in model calibration may assist in transferring model parameters to ungauged catchments has not been fully resolved. The aim of this study is to evaluate the efficiency of different methods for transferring model parameters obtained by multiple objective calibrations to ungauged sites and to assess the model performance in terms of runoff, soil moisture, and snow cover predictions relative to existing regionalization approaches. The model parameters are calibrated to daily runoff, satellite soil moisture (ASCAT), and snow cover (MODIS) data. The assessment is based on 213 catchments situated in different physiographic and climate zones of Austria. For the transfer of model parameters, eight methods (global and local variants of arithmetic mean, regression, spatial proximity, and similarity) are examined in two periods, i.e., the period in which the model is calibrated (2000–2010) and an independent validation period (2010–2014). The predictive accuracy is evaluated by leave-one-out cross-validation. The results show that the method by which the model is calibrated in the gauged catchment has a larger impact on runoff prediction accuracy in the ungauged catchments than the choice of the parameter transfer method. The best transfer methods are global and local similarity and the kriging approach. The performance of the transfer methods differs between lowland and alpine catchments. While the soil moisture and snow cover prediction efficiencies are higher in lowland catchments, the runoff prediction efficiency is higher in alpine catchments. A comparison of model transfer methods based on parameters calibrated to runoff, snow cover, and soil moisture with those based on parameters calibrated to runoff only indicates that the former outperforms the latter in terms of simulating soil moisture and snow cover. The performance of simulating runoff is similar, and the accuracy depends mainly on the weight given to the runoff objective in the multiple objective calibrations.


Sign in / Sign up

Export Citation Format

Share Document