seedling traits
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 69)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jason C. S. Chan ◽  
Mark K. J. Ooi ◽  
Lydia K. Guja

Ploidy and species range size or threat status have been linked to variation in phenotypic and phenological seed and seedling traits, including seed size, germination rate (speed) and seedling stature. There is surprisingly little known about the ecological outcomes of relationships between ploidy, key plant traits and the drivers of range size. Here we determined whether ploidy and range size in Pomaderris, a genus of shrubs that includes many threatened species, are associated with variation in seed and seedling traits that might limit the regeneration performance of obligate seeders in fire-prone systems. We experimentally quantified seed dormancy and germination processes using fire-related heat treatments and evaluated seedling performance under drought stress. We also examined the association of seed size with other seed and seedling traits. Polyploids had bigger seeds, a faster germination rate and larger and taller seedlings than diploids. There was a lack of any clear relationship between range size and seed or seedling traits. The ploidy effects observed for many traits are likely to be indirect and associated with the underlying seed size differences. These findings indicate that there is a higher potential competitive advantage in polyploid than diploid Pomaderris during regeneration, a critical stage in the post-fire environment. This insight to the regeneration phase may need to be considered when planning and prioritising management of threatened species.


2021 ◽  
Vol 9 ◽  
Author(s):  
João Costa e Silva ◽  
Rebecca Jordan ◽  
Brad M. Potts ◽  
Elizabeth Pinkard ◽  
Suzanne M. Prober

We evaluated population differences and drought-induced phenotypic selection on four seedling traits of the Australian forest tree Eucalyptus pauciflora using a glasshouse dry-down experiment. We compared dry and mesic populations and tested for directional selection on lamina length (reflecting leaf size), leaf shape, the node of ontogenetic transition to the petiolate leaf (reflecting the loss of vegetative juvenility), and lignotuber size (reflecting a recovery trait). On average, the dry population had smaller and broader leaves, greater retention of the juvenile leaf state and larger lignotubers than the mesic population, but the populations did not differ in seedling survival. While there was statistical support for directional selection acting on the focal traits in one or other population, and for differences between populations in selection gradient estimates for two traits, only one trait—lamina length—exhibited a pattern of directional selection consistent with the observed population differences being a result of past adaptation to reduce seedling susceptibility to acute drought. The observed directional selection for lamina length in the mesic population suggests that future increases in drought risk in the wild will shift the mean of the mesic population toward that of the dry population. Further, we provide evidence suggesting an early age trade-off between drought damage and recovery traits, with phenotypes which develop larger lignotubers early being more susceptible to drought death. Such trade-offs could have contributed to the absence of population mean differences in survival, despite marked differentiation in seedling traits.


2021 ◽  
Author(s):  
Gereltsetseg Enkhbat ◽  
Megan H. Ryan ◽  
Phillip G. H. Nichols ◽  
Kevin J. Foster ◽  
Yoshiaki Inukai ◽  
...  

Abstract Background and AimsIn the annual pasture legume Trifolium subterraneum, ssp. yanninicum exhibits higher waterlogging tolerance than ssp. brachycalycinum and ssp. subterraneum. This study investigates waterlogging tolerance within ssp. yanninicum ecotypes and explores correlations with seedling phenotypic traits and site of origin eco-geographic variables.MethodsTwenty eight diverse ssp. yanninicum ecotypes collected from the Mediterranean region and four cultivars were grown in a controlled environment glasshouse. After 14 days of growth seedling traits were measured. After 21 days of growth, free-drained (control) and waterlogged treatments were imposed for 28 days. Eco-geographic variables were generated from ‘WorldClim’ using collection site locations.ResultsUnder waterlogging, shoot relative growth rate (RGR) ranged from 87–108% and root RGR ranged from 80–116% of controls. Waterlogging reduced shoot dry weight (DW) in four of 32 genotypes, while root DW was reduced in 13 genotypes. Leaf size was maintained, or even increased, under waterlogging in 31 genotypes. However, petiole length was more affected by waterlogging and has value as a waterlogging tolerance indicator. Waterlogging tolerance was not significantly correlated with seedling DW, flowering time or precipitation at the site of origin, while shoot growth under waterlogging had a positive correlation with summer temperatures at origin.ConclusionsGenotypes of ssp. yanninicum tolerated transient waterlogging and greater tolerance was observed among ecotypes, rather than cultivars. An easy-to-measure indicator of tolerance was found in petiole length reduction. This study highlights untapped genotypic variability for breeders to improve the productivity and persistence of ssp. yanninicum under waterlogging.


Author(s):  
Qinhui Zhang ◽  
Shihe Yu ◽  
Xiaona Pei ◽  
Qianchun Wang ◽  
Aijun Lu ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1786
Author(s):  
Soumeya Rida ◽  
Oula Maafi ◽  
Ana López-Malvar ◽  
Pedro Revilla ◽  
Meriem Riache ◽  
...  

Drought is one of the most detrimental abiotic stresses hampering seed germination, development, and productivity. Maize is more sensitive to drought than other cereals, especially at seedling stage. Our objective was to study genetic regulation of drought tolerance at germination and during seedling growth in maize. We evaluated 420 RIL with their parents from a multi-parent advanced generation inter-cross (MAGIC) population with PEG-induced drought at germination and seedling establishment. A genome-wide association study (GWAS) was carried out to identify genomic regions associated with drought tolerance. GWAS identified 28 and 16 SNPs significantly associated with germination and seedling traits under stress and well-watered conditions, respectively. Among the SNPs detected, two SNPs had significant associations with several traits with high positive correlations, suggesting a pleiotropic genetic control. Other SNPs were located in regions that harbored major QTLs in previous studies, and co-located with QTLs for cold tolerance previously published for this MAGIC population. The genomic regions comprised several candidate genes related to stresses and plant development. These included numerous drought-responsive genes and transcription factors implicated in germination, seedling traits, and drought tolerance. The current analyses provide information and tools for subsequent studies and breeding programs for improving drought tolerance.


Author(s):  
Qinhui Zhang ◽  
Shihe Yu ◽  
Xiaona Pei ◽  
Qianchun Wang ◽  
Aijun Lu ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1115
Author(s):  
Hisanori Harayama ◽  
Hiroyuki Tobita ◽  
Mitsutoshi Kitao ◽  
Hirokazu Kon ◽  
Wataru Ishizuka ◽  
...  

A previous study revealed low survival rates for Japanese larch (Larix kaempferi) summer-planted seedlings grown in Hiko-V-120 containers. This study examines nursery practices that could potentially prevent deterioration of the seedling water balance after planting to improve the survival rate of this species, which has a low drought tolerance. During summer planting, we tested (1) drought hardening or high-potassium fertilization for two months before planting, (2) antitranspirant or topping treatment at planting, and (3) the use of the JFA-150 container with a larger capacity and lower growing density than the Hiko-V-120 container. Drought hardening increased seedling drought tolerance because of the low leaf:root ratio, due to lower leaf mass production, resulting in increased survival from 74% to 93% in Hiko-V-120 containers. When JFA-150 containers were used, the leaf:root ratio was lower because of higher root mass, resulting in an increase in survival to 87%, with the highest survival of 97% when combined with drought hardening. The application of antitranspirant increased survival to over 90%, whereas topping did not, probably because of severer competition from weeds. High-potassium fertilization did not affect seedling traits or survival. For better survival of summer-planted container-grown Japanese larch seedlings, it is recommended that they be grown in containers providing sufficient cell volume and density for root growth while the seedlings are in the nursery and that irrigation be withheld for two months before planting. In addition, to obtain higher survival, an antitranspirant can be applied at planting at a cost.


2021 ◽  
Vol 11 (14) ◽  
pp. 6489
Author(s):  
Jittrera Buates ◽  
Tsuyoshi Imai

The objective of this study was to verify the feasibility of using biochar, functionalized with layered double hydroxides, as a fertilizer after its use in phosphate treatment (P-BC-LDHs). It was conducted with several levels of P-BC-LDHs using seed germination and early growth assays of lettuce (Lactuca sativa L.). The application of P-BC-LDHs resulted in successful seedling emergence, with an excellent germination capacity of over 96% for all treatments. However, compared to the controls, P-BC-LDHs did not provide favorable seedling traits. In contrast, in the latter experiments, lettuce cultivated under mixtures with P-BC-LDHs, particularly at an application rate of 2.5% (w/w), displayed superior growth quality to those under non-treated conditions. The length of lettuce shoots and roots from this optimal dosage were increased by at least 24% compared to untreated samples. A 17% reduction in biomass yield was observed for the samples from non-supplemented substrates. The nutrient release profiles showed that P-BC-LDHs were capable of slowly supplying phosphorus, thereby increasing the long-term nutrient availability for plants. The findings reported here provide important insights into these materials and confirm that P-BC-LDHs can be used for agricultural purposes after phosphate remediation applications. The results of this study provide constructive information to facilitate the implementation of biochar-based LDH composites for sustainable phosphate removal and recovery.


Sign in / Sign up

Export Citation Format

Share Document