group velocity dispersion
Recently Published Documents


TOTAL DOCUMENTS

595
(FIVE YEARS 108)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 884
Author(s):  
Xinlei Qian ◽  
Xiaochao Wang ◽  
Xinghua Lu ◽  
Tianyu Zhang ◽  
Wei Fan

The group velocity dispersion (GVD) occurring in the front end of high-power lasers is one of the primary factors leading to the conversion of frequency modulation (FM) to amplitude modulation (AM). In this paper, we propose a modified, active, closed-loop feedback compensation device for GVD-induced FM–AM conversion, using a two-dimensional, electric, adjustable mirror mount and parallel grating pair to improve the long-term stability, efficiency of adjustment, and accuracy of compensation. Experimental results of a 12 h FM–AM depth test revealed that the depth varied between 2.28% and 5.22%. Moreover, we formulated a mathematical relationship between the dispersion parameters and temperature in optical fibers to analyze the intrinsic effect of temperature on FM–AM. The related simulation and experimental results consistently validated the quantitative relationship between the temperature and FM–AM depth.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 590
Author(s):  
Haili Han ◽  
Nan-Kuang Chen ◽  
Liqiang Zhang ◽  
Yanru Xie ◽  
Zhen Tian ◽  
...  

The dependence of the output pulse characteristics of a Mamyshev fiber oscillator on cavity parameters is investigated in detail. We analyze the change in pulse spectrum bandwidth, pulse duration, dechirped pulse duration and chirp with the change in fiber group velocity dispersion, fiber nonlinearity, gain, and filters by putting forward a numerical model. In particular, as one of the most important components, the effect of filters bandwidth and the central wavelength interval between them is discussed. The passive fibers are classified into two kinds according to their locations in the cavity, which are the one before the gain fiber and the one after the gain fiber. Numerical simulation results show that a wide spectrum can be obtained by increasing the nonlinearity of the second passive fiber, while the change in nonlinearity of the first passive fiber has a weak effect on spectrum broadening. A wide spectrum could also be obtained by increasing the nonlinearity or the small-signal gain coefficient of the gain fiber. A Yb-doped Mamyshev fiber oscillator is demonstrated. The results show the increase in pump power, which agrees reasonably well with the numerical simulation results.


2021 ◽  
Author(s):  
◽  
Andy McNab

<p>This thesis applies ambient noise tomography to investigate the shallow structure of the Whataroa Valley. Ambient noise techniques are applied to continuous seismic recordings acquired on 158 geophones deployed during the Whataroa Active Source Seismic Experiment. Despite only having four days of data, a robust shear-wave velocity model is calculated using a phase-weighted stacking approach to improve the cross-correlation functions' signal-to-noise ratios, allowing for robust velocity measurements to be obtained between periods of 0.3 and 1.8\,s. This yields a database of 12,500 vertical component cross correlation functions and the corresponding Rayleigh wave phase and group velocity dispersion curves. Linearised straight-ray tomography is applied to phase and group velocity dispersion measurements at periods ranging from periods of 0.3 to 1.8\,s. The tomography reveals a velocity that decreases from the vicinity of the DFDP-2B borehole to the centre of the valley. This is interpreted to be the geologic basement deepening towards the centre of the valley. A Monte-Carlo inversion technique is used to jointly invert Rayleigh-wave phase and group velocity dispersion curves constructed from phase and group velocity tomography maps of successively higher periods. Linear interpolation of the resulting 1D shear-wave velocity profiles produces a pseudo-3D velocity model of the uppermost 1,000\,m of the Whataroa Valley. Using sharp increases in velocity to represent lithological change, we interpret two velocity contours at 1,150 and 1,250\,m/s as potential sediment-basement contacts. Depth isocontours of these velocities reveal that the basement deepens towards the centre of the valley, reaching a maximum depth of 400 or 600\,m for the 1,150 and 1,250\,m/s velocity contours respectively. These depths indicate strong glacial over-deepening and have implications for future drilling projects in the Whataroa Valley. A sharp velocity increase of 200\,m/s also occurs at 100\,m depth at the DFDP-2B borehole. We interpret this to be a change in sedimentary rock lithology from fluvial gravels to lacustrine silty sands, related to a change in sedimentary depositional environment.</p>


2021 ◽  
Author(s):  
◽  
Andy McNab

<p>This thesis applies ambient noise tomography to investigate the shallow structure of the Whataroa Valley. Ambient noise techniques are applied to continuous seismic recordings acquired on 158 geophones deployed during the Whataroa Active Source Seismic Experiment. Despite only having four days of data, a robust shear-wave velocity model is calculated using a phase-weighted stacking approach to improve the cross-correlation functions' signal-to-noise ratios, allowing for robust velocity measurements to be obtained between periods of 0.3 and 1.8\,s. This yields a database of 12,500 vertical component cross correlation functions and the corresponding Rayleigh wave phase and group velocity dispersion curves. Linearised straight-ray tomography is applied to phase and group velocity dispersion measurements at periods ranging from periods of 0.3 to 1.8\,s. The tomography reveals a velocity that decreases from the vicinity of the DFDP-2B borehole to the centre of the valley. This is interpreted to be the geologic basement deepening towards the centre of the valley. A Monte-Carlo inversion technique is used to jointly invert Rayleigh-wave phase and group velocity dispersion curves constructed from phase and group velocity tomography maps of successively higher periods. Linear interpolation of the resulting 1D shear-wave velocity profiles produces a pseudo-3D velocity model of the uppermost 1,000\,m of the Whataroa Valley. Using sharp increases in velocity to represent lithological change, we interpret two velocity contours at 1,150 and 1,250\,m/s as potential sediment-basement contacts. Depth isocontours of these velocities reveal that the basement deepens towards the centre of the valley, reaching a maximum depth of 400 or 600\,m for the 1,150 and 1,250\,m/s velocity contours respectively. These depths indicate strong glacial over-deepening and have implications for future drilling projects in the Whataroa Valley. A sharp velocity increase of 200\,m/s also occurs at 100\,m depth at the DFDP-2B borehole. We interpret this to be a change in sedimentary rock lithology from fluvial gravels to lacustrine silty sands, related to a change in sedimentary depositional environment.</p>


Laser Physics ◽  
2021 ◽  
Vol 31 (12) ◽  
pp. 126206
Author(s):  
A Rajesh ◽  
S Chandru ◽  
S Robinson

Abstract Defective hybrid cladding through a silicon nanocrystal-core-structured photonic crystal fiber intended for high pump power supercontinuum proliferation is discussed in this paper. The cladding comprehends a hybrid approach of a hexagonal air hole in the outer section and a petal-structured air hole in the inner layer with a twisted pattern. Such a procedure with an air hole in the cladding section with a silicon nanocore displays high nonlinearity and negative dispersion at the communication window for varying pulse widths with 20 kW pump power. The impact of structural parameters of the proposed structure on the optical constraints is discussed, namely, dispersion, nonlinearity and group-velocity dispersion for wavelengths ranging from 0.45 µm to 1.85 µm. The proposed structure with optimized structural parameters provides high nonlinearity of about 6.38 × 106 W−1 km−1 with negative dispersion of −70.19 ps (nm km)−1 at 1550 nm.


2021 ◽  
Vol 18 (12) ◽  
pp. 125104
Author(s):  
A V Andrianov ◽  
N A Kalinin ◽  
E A Anashkina

Abstract In-phase and out-of-phase supermodes were selectively excited (with modal content >90%) in the wavelength range near 1030 nm in a silica multicore fibre with 5 × 5 coupled cores using a spatial light modulator. Group velocity dispersion (GVD) parameters of 21 ps2 km−1 and 14 ps2 km−1 at 1030 nm were measured for in-phase and out-of-phase supermodes, respectively, using an interferometric scheme. The numerically simulated GVD values agree with the experimental results. The calculated zero-dispersion wavelengths (ZDWs) of 1360 nm and 1180 nm for in-phase and out-of-phase supermodes are red-shifted and blue-shifted, respectively, compared to the ZDW of silica glass. The anomalous dispersion for the out-of-phase supermode is predicted in the telecommunication O-band near 1300 nm. The theoretical explanation of the difference in the wavelength-dependence of GVD for in-phase and out-of-phase supermodes is given.


2021 ◽  
Author(s):  
Xinyi Zhu ◽  
Luis Romero Cortes ◽  
Jose Azana

2021 ◽  
Vol 2109 (1) ◽  
pp. 012008
Author(s):  
Konttao Zhu ◽  
Hongxue Yang ◽  
Hui Du

Abstract An advanced post-processing scheme of reconfigurable dielectric infiltration into an annular slotted photonic crystal waveguide (ASPhCW) is proposed in this paper. Ionic liquids have had prominent effects in enhancing the optical properties of photonic crystals, especially in the aspect of tuning the transmission rate and velocity through optical materials. Using the two-dimensional plane wave expansion method, the flat band dispersion of the slow light is obtained and the tuning of the operating wavelength of the crystal could be realized by incoming polymer technology. The operating wavelength tuning range could be as large as 459.27nm and the group index could be tuned as high as 44.8 with a near zero group velocity dispersion. Using this method, a high group index equaling 45 with the bandwidth equaling 11.3nm and the normalized delay bandwidth product (NDBP) equaling 0.25 is realized. This incoming polymer technology provides an effective method of getting flat band of slow light flexibly and makes it possible to offer longer delay and low group velocity after fabrication.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012082
Author(s):  
Lukas Seitner ◽  
Johannes Popp ◽  
Michael Riesch ◽  
Michael Haider ◽  
Christian Jirauschek

Abstract As many molecules have their rotovibrational resonance frequencies in the mid-infrared or terahertz regime, efficient generation of corresponding frequency combs may lead to large progress in gas spectroscopy and sensing. Quantum cascade lasers (QCLs) are among the most promising candidates for a compact and cheap radiation source in this frequency range. This contribution presents a full-wave numerical solution of the Maxwell-Liouville-von Neumann equations, thus avoiding the limited applicability of the rotating wave approximation to moderate field strengths and spectral bandwidths. We include losses and chromatic dispersion of the optically active material in the QCL. The semiclassical approach uses the finite-difference time-domain (FDTD) method to derive update equations for the electric field, starting from the one-dimensional Maxwell equations. There, the optical full-wave propagation is coupled to the electronic quantum system via a polarization term that arises from the evolution of the density matrix. Furthermore, dispersion effects are considered through a classical polarization term and losses are introduced by a finite material conductivity. This work mainly focuses on the integration of group velocity dispersion (GVD) due to the bulk material and, if applicable, the waveguide geometry into the update equations. It is known to be one of the main degradation mechanisms of terahertz frequency combs, but has not yet been added to the existing full-wave solver. The implementation is carried out as Lorentz model and is applied to an experimentally investigated QCL frequency comb setup from the literature. The reported results are in good agreement with the experimental data. Especially, they confirm the need for dispersion compensation for the generation of terahertz frequency combs in QCLs.


2021 ◽  
Author(s):  
Somen Adhikary ◽  
Mousumi Basu

Abstract A Silicon on Insulator (SOI) planar waveguide is designed here possessing a small group velocity dispersion (β2) ∼ 2.212 (ps2/m) with quite high nonlinear coefficient (γ) of ∼ 360.57 (W.m)-1. The so designed waveguide is capable of reshaping a Super-Gaussian input optical pulse into parabolic pulse (PP), without any use of external gain. The same waveguide with relatively longer length is also able to generate triangular pulse (TP) by using positive chirp at the input. In both cases PP and TP are created at much shorter optimum length (Lopt) of few mm, when compared to previously reported works on normal dispersion optical fibers. The interaction of a pulse pair inside such a SOI waveguide is investigated also for the first time as per our knowledge to generate of a high frequency (~ 4.8 THz) pulse train, while lower repetition rate (~180 GHz) pulses are used at the input. This study as a whole enables one to have potential device applications in the domain of tunable high frequency (THz) pulse generators, optical signal processing and many more.


Sign in / Sign up

Export Citation Format

Share Document