point tracking
Recently Published Documents


TOTAL DOCUMENTS

4587
(FIVE YEARS 1553)

H-INDEX

101
(FIVE YEARS 16)

Author(s):  
Mounir Ouremchi ◽  
Said El Mouzouade ◽  
Karim El Khadiri ◽  
Ahmed Tahiri ◽  
Hassan Qjidaa

This paper presents an integrated power control system for photovoltaic systems based on maximum power point tracking (MPPT). The architecture presented in this paper is designed to extract more power from photovoltaic panels under different partial obscuring conditions. To control the MPPT block, the integrated system used the ripple correlation control algorithm (RCC), as well as a high-efficiency synchronous direct current (DC-DC) boost power converter. Using 180 nm complementary metal-oxide-semiconductor (CMOS) technology, the proposed MPPT was designed, simulated, and layout in virtuoso cadence. The system is attached to a two-cell in series that generates a 5.2 V average output voltage, 656.6 mA average output current, and power efficiency of 95%. The final design occupies only 1.68 mm2.


2022 ◽  
Vol 166 ◽  
pp. 108482
Author(s):  
Dachuan Shi ◽  
Eldar Šabanovič ◽  
Luca Rizzetto ◽  
Viktor Skrickij ◽  
Roberto Oliverio ◽  
...  

Author(s):  
Sukarno Budi Utomo ◽  
Iwan Setiawan ◽  
Berkah Fajar ◽  
Sonny Hady Winoto ◽  
Arief Marwanto

The lack of wind speed capacity and the emission of photons from sunlight are the problem in a hybrid system of photovoltaic (PV) panels and wind turbines. To overcome this shortcoming, the incremental conductance (IC) algorithm is applied that could control the converter work cycle and the switching of the buck boost therefore maximum efficiency of maximum power point tracking (MPPT) is reached. The operation of the PV-wind hybrid system, consisting of a 100 W PV array device and a 400 W wind subsystem, 12 V/100 Ah battery energy storage and LED, the PV-wind system requires a hybrid controller for battery charging and usage and load lamp and it’s conducted in experimental setup. The experimental has shown that an average increase in power generated was 38.8% compared to a single system of PV panels or a single wind turbine sub-system. Therefore, the potential opportunities for increasing power production in the tropics wheather could be carried out and applied with this model.


Author(s):  
Mohamed Hussein Mohamedy Ali ◽  
Mahmoud Mohammed Sayed Mohamed ◽  
Ninet Mohamed Ahmed ◽  
Mohamed Bayoumy Abdelkader Zahran

Solar photovoltaic (SPV) systems are a renewable source of energy that are environmentally friendly and recyclable nature. When the solar panel is connected directly to the load, the power delivered to the load is not the optimal power. It is therefore important to obtain maximum power from SPV systems for enhancing efficiency. Various maximum power point tracking (MPPT) techniques of SPV systems were proposed. Traditional MPPT techniques are commonly limited to uniform weather conditions. This paper presents a study of MPPT for photovoltaic (PV) systems. The study includes a discussion of different MPPT techniques and performs comparison for the performance of the two MPPT techniques, the P&O algorithm, and salp swarm optimization (SSO) algorithm. MATLAB simulations are performed under step changes in irradiation. The results of SSO show that the search time of maximum power point (MPP) is significantly decreased and the MPP is obtained in the shortest time with high accuracy and minimum oscillations in the generated power when compared with P&O.


2022 ◽  
Vol 12 (2) ◽  
pp. 742
Author(s):  
Erkata Yandri

The purpose of the present study is developing the operation mode factor (OMF) by remodeling the thermal efficiency model of a hybrid PVT collector during steady state. Joule heating occurs when the photovoltaic (PV) panel operates at a high current during maximum power point tracking (MPPT) on higher irradiation. Under these conditions, some electrical energy converts to thermal energy within the PV cells. Joule heating contributed to increasing the PVT thermal efficiency. The steps were to construct the OMF by remodeling the thermal efficiency involving the Joule heating effect and to validate the results using the model by comparing the simulation and experiment. The dimensionless OMF was responsible for changes in thermal efficiency for PVT-mode. The conductive heat transfer coefficient from the surface to the absorber was the most decisive component in the OMF. Heat removal factor and OMF might be interrelated at the mass flow rate by decreasing PV temperature to maintain Joule heating. The proposed model with OMF had explained PVT-mode and T-mode with the RMS value of less than 1%. This model complemented the results of the previous studies. The results may contribute from the initial design to the operational monitoring for thermal to electrical energy production.


Sign in / Sign up

Export Citation Format

Share Document