mn oxide
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 133)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
pp. 134446
Author(s):  
Zhuang Zeng ◽  
Siyu Kuang ◽  
Zhen-Feng Huang ◽  
Xiaoyi Chen ◽  
Yaqiong Su ◽  
...  

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jafar Safarian

Hydrogen and aluminum were used to produce manganese, aluminum–manganese (AlMn) and ferromanganese (FeMn) alloys through experimental work, and mass and energy balances. Oxide pellets were made from Mn oxide and CaO powder, followed by pre-reduction by hydrogen. The reduced MnO pellets were then smelted and reduced at elevated temperatures through CaO flux and Al reductant addition, yielding metallic Mn. Changing the amount of the added Al for the aluminothermic reduction, with or without iron addition led to the production of Mn metal, AlMn alloy and FeMn alloy. Mass and energy balances were carried out for three scenarios to produce these metal products with feasible material flows. An integrated process with three main steps is introduced; a pre-reduction unit to pre-reduce Mn ore, a smelting-aluminothermic reduction unit to produce metals from the pre-reduced ore, and a gas treatment unit to do heat recovery and hydrogen looping from the pre-reduction process gas. It is shown that the process is sustainable regarding the valorization of industrial waste and the energy consumptions for Mn and its alloys production via this process are lower than current commercial processes. Ferromanganese production by this process will prevent the emission of about 1.5 t CO2/t metal.


Author(s):  
Zahra Abedi ◽  
Desiree Leistenschneider ◽  
Douglas Ivey ◽  
Weixing Chen

Abstract Birnessite type Mn oxide (potassium birnessite hydrate) powder (as-δ-MnO2) with a layered microstructure was prepared via a hydrothermal process. To improve its capacitive performance, the microstructure was thermally modified (annealed) at 400 oC (400-δ-MnO2) in a N2 reducing environment. By removing the hydrated cations (K+) layers inserted between the main layers of birnessite, damaging the microstructure, intercalation/deintercalation of the electrolyte species (Li+1) became more effective. Characterization of as-δ-MnO2 and 400-δ-MnO2 revealed that no phase transformation occurred during the annealing process. The microstructure became less crystalline and the total pore volume increased from 0.20 cm3 g-1 to 0.43 cm3 g-1, while the oxidation state of Mn remained 4+ after annealing the as-δ-MnO2 at 400 oC. The 400-δ-MnO2 sample was then coated on asphaltene derived activated carbon fibers (ACF-400-δ-MnO2) to improve the performance by making use of the high electrical conductivity and capacitive behavior of ACF. Coating the 400-δ-MnO2 sample led to a significant increase in the capacitance (328 F g-1 and 195 F g-1 for ACF-400-δ-MnO2 and 400-δ-MnO2 at 0.4 A g-1, respectively), improved energy and power values (~7 kW kg-1 at ~4.2 Wh kg-1 for ACF-400-δ-MnO2 and 240 W kg-1 at 2.4 Wh kg-1 for 400-δ-MnO2) and improved cycling behavior.


2021 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Thien Tran Vinh ◽  
Tu Nguyen Thi Thanh ◽  
Son Bui Hai Dang

The paper presents the modification of Phu Yen diatomite by oxidation-reduction reaction between Fe (II) and KMnO4 salts in solution pH = 6 on the diatomite surface. Characteristics of modified materials and the influence of research factors on these characteristics were investigated using techniques XRD, EDX, XPS, SEM, TEM, BET. Arsenic adsorption capacity of modified materials, the influence of environmental factors on the adsorption capacity were also investigated and evaluated. The results showed that mixed oxide-modified diatomite has higher arsenic adsorption capacity than natural diatomite and modified diatomite by individual oxides.


2021 ◽  
pp. 65-66
Author(s):  
V. AVDONIN

Ocean floor Fe-Mn nodule sequence is a product of Mesozoic-Cenozoic global epoch of Fe-Mn oxide ore accumulation. Buried nodules formed in Late Paleocene-Eocene, Late Cretaceous, Cenomanian.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7104
Author(s):  
Hersandy Dayu Kusuma ◽  
Rochmadi ◽  
Imam Prasetyo ◽  
Teguh Ariyanto

This study explores the modification of lignin with surfactants, which can be used as a template to make mesoporous structures, and can also be used in combination with manganese oxide to produce manganese oxide/lignin-derived carbon. Organosolv extraction, using ethanol (70%) at 150 °C, was carried out to extract lignin from oil palm wood. Lignin was then mixed with Pluronic F-127, with and without Mn(NO3)2, and then crosslinked with acidic formaldehyde, resulting in a carbon precursor-based modified lignin. Carbonization was carried out at 900 °C to produce lignin-derived carbon and manganese oxide/lignin-derived carbon. The characterization materials included Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope-energy dispersive X-ray (SEM-EDX) mapping, X-ray diffraction (XRD), and N2-sorption analysis. FTIR curves displayed the vibration bands of lignin and manganese oxide. SEM images exhibited the different morphological characteristics of carbon from LS120% (lignin with a Pluronic surfactant of 120%) and LS120%Mn20% (lignin with a Pluronic of 120% and Mn oxide of 20%). Carbon LS120% (C-LS120%) showed the highest specific surface area of 1425 m2/g with a mean pore size of 3.14 nm. The largest mean pore size of 5.23 nm with a specific surface area of 922 m2/g was exhibited by carbon LS120%-Mn20% (C-LS120%-Mn20%). C-LS120%Mn20% features two phases of Mn oxide crystals. The highest specific capacitance of 345 F/g was exhibited by C-LS120%-Mn20%.


2021 ◽  
Vol 13 (22) ◽  
pp. 12742
Author(s):  
Mahrous Awad ◽  
Mahmuod M. El-Sayed ◽  
Xiang Li ◽  
Zhongzhen Liu ◽  
Syed Khalid Mustafa ◽  
...  

Depending on the geochemical forms, heavy metal (HM) accumulation is one of the most serious environmental problems in the world and poses negative impacts on soil, plants, animals, and humans. Although the use of biochar to remediate contaminated soils is well known, the huge quantities of waste used and its recycling technique to sustain soil in addition to its use conditions are determinant factors for its characteristics and uses. A pot experiment was conducted in a completely randomized block design to evaluate metal forms and their availability under the application of garden waste biochar (GB) pyrolyzed at different temperatures, and a sequential extraction procedure was designed to fractionate Pb, Cd, Zn, and Cu of the contaminated soil. The results show that the TCLP-extractable Pb, Cd, Zn, and Cu were significantly decreased depending on the biochar addition rate, pyrolysis temperature, and tested metal. The acid extractable fraction was significantly decreased by 51.54, 26.42, 16.01, and 74.13% for Pb, Cd, Zn, and Cu, respectively, at the highest application level of GB400 compared to untreated pots. On the other hand, the organic matter bound fraction increased by 76.10, 54.69, 23.72, and 43.87% for the corresponding metals. The Fe/Mn oxide bound fraction was the predominant portion of lead (57.25–62.84%), whereas the acid fraction was major in the case of Cd (58.06–77.05%). The availability of these metals varied according to the application rate, pyrolysis temperature, and examined metals. Therefore, the GB is a nominee as a promising practice to reduce HM risks, especially pyrolyzed at 400 °C by converting the available fraction into unavailable ones.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1243
Author(s):  
Sida Niu ◽  
Liqun Zhao ◽  
Xiaoju Lin ◽  
Tong Chen ◽  
Yingchao Wang ◽  
...  

The Guangxi Zhuang Autonomous Region is an important manganese ore district in Southwest China, with manganese ore resource reserves accounting for 23% of the total manganese ore resource reserves in China. The Xialei manganese deposit (Daxin County, Guangxi) is the first super-large manganese deposit discovered in China. The Mn oxide in the supergene oxidation zone of the Xialei deposit was characterized using scanning electron microscopy (SEM), energy spectrometer (EDS), transmission electron microscopy (TEM, HRTEM), and X-ray diffraction analysis (XRD). The Mn oxides have a gray-black/steel-gray color, a semi-metallic-earthy luster, and appear as oolitic, pisolitic, banded, massive, and cellular textures. Scanning electron microscopy images show that the manganese oxide minerals are present as fine-spherical particles with an earthy surface. TEM and HRTEM indicate the presence of oriented bundled and staggered nanorods, and nanopores between the crystals. The Mn oxide ore can be classified into two textural types: (1) oolitic and pisolitic (often with annuli) Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and hollandite are the main Mn oxide minerals. The potassium contents of cryptomelane and pyrolusite are discussed. The unit cell parameters of pyrolusite are refined.


Sign in / Sign up

Export Citation Format

Share Document