nanosized materials
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 4)

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Bryan J. Mathis ◽  
Misa Kusumoto ◽  
Alexander Zaboronok ◽  
Yuji Hiramatsu

Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.


2021 ◽  
Vol 3 ◽  
Author(s):  
Débora Campos ◽  
Ricardo Goméz-García ◽  
Diana Oliveira ◽  
Ana Raquel Madureira

ABSTRACT The oral delivery of compounds associated with diet or medication have an impact on the gut microbiota balance, which in turn, influences the physiologic process. Several reports have shown significant advances in clarifying the impact, interactions and outcomes of oral intake of nanoparticles and the human gut. These interactions may affect the bioavailability of the delivered compounds. In addition, there is a considerable breakthrough in the development of antimicrobial nanoparticles for intestinal pathogenic bacteria. Several in vitro fermentation and in vivo models have been developed throughout the years and were used to test these systems. The methodologies and studies carried out so far on the modulation of human and animal gut microbiome by oral delivery nanosized materials were reviewed. Overall, the available in vitro studies mimic the real physiological events enabling to select the best production conditions of nanoparticulate systems in a preliminary stage of research. On the other hand, animal studies can be used to access the dosage effect, safety and correlation between haematological, biochemical and symptoms, with gut microbiota groups and metabolites.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6387
Author(s):  
Haleema Saleem ◽  
Syed Javaid Zaidi ◽  
Nasser Abdullah Alnuaimi

At present, nanotechnology is a significant research area in different countries, owing to its immense ability along with its economic impact. Nanotechnology is the scientific study, development, manufacturing, and processing of structures and materials on a nanoscale level. It has tremendous application in different industries such as construction. This study discusses the various progressive uses of nanomaterials in concrete, as well as their related health risks and environmental impacts. Nanomaterials such as nanosilica, nano-TiO2, carbon nanotubes (CNTs), ferric oxides, polycarboxylates, and nanocellulose have the capability to increase the durability of buildings by improving their mechanical and thermal properties. This could cause an indirect reduction in energy usage and total expenses in the concrete industry. However, due to the uncertainties and irregularities in size, shape, and chemical compositions, some nanosized materials might have harmful effects on the environment and human health. Acknowledgement of the possible beneficial impacts and inadvertent dangers of these nanosized materials to the environment will be extremely important when pursuing progress in the upcoming years. This research paper is expected to bring proper attention to the probable effects of construction waste, together with the importance of proper regulations, on the final disposal of the construction waste.


2021 ◽  
pp. 48-50
Author(s):  
Bandaru Hemanth Kumar ◽  
Shaik Farooq Ahmed ◽  
Prasanthi D

This review determines various nanomaterial based cosmeceuticals. And glance on the properties, types, techniques used for preparation of nanomaterials, their advantages & disadvantages and various marketed products. Cosmeceuticals are fastest growing segment in the personal care industry and their use has increased drastically over the past years. The nanocosmeceuticals are mainly used in the application of cosmetics in managing conditions of wrinkling, dehydrated & inelastic skin associated with aging and dispersed hyperpigmentation, with the use of nanosized materials. The nanosized materials are nano emulsions, liposomes, nanosomes, dendrimers, nanocapsules and solid lipid nano particles. These nanosized materials have an advantage in increasing skin penetration and they release the active substances in a controlled and sustained manner. They have a higher stability; can be site specic targeting and high entrapment efcacy. Researchers have indicated concern regarding the impact of increased use of nanosized materials in cosmeceuticals and there are some possibilities of nanosized material can penetrate into the skin and cause health hazards.


2021 ◽  
Vol 10 (32) ◽  
pp. 2658-2664
Author(s):  
Nausheen Mobeen ◽  
Shreya Kishore ◽  
Rasiga Gandhi ◽  
Sangeetha Duraisamy ◽  
Ravi K.

Nanotechnology is the science of manipulating matter, measured in the billionths of a nanometer, roughly the size of two or three atoms. It is widely used in our day-today life including its use in medicine and is considered as a vital current technology of the 21st century based on its economic and scientific potential. Its application is being experimented in various domains in orthodontics, from surface coatings to the development of novel materials. Orthodontic materials must have specific characteristics such as biological safety, functionality, and adequate tissue response. They have to pass specific biocompatibility tests to meet regulatory standards. Any material used in oral cavity might encourage unnecessary disturbance due to its complex and varied environment. The nanomaterials have many advantages in the field of orthodontics, especially with improved mechanical and antimicrobial properties. Nanoparticles can easily penetrate tissues and can affect biological behaviours at different levels. The introduction of nanotechnology gives better opportunities to both patient and orthodontist to new physicochemical, mechanical, and antibacterial properties of nanosized materials and can be used in coating orthodontic wires, elastomeric ligatures, and brackets, producing shape memory polymers and orthodontic bonding materials. The present review article focuses on the application of nanoparticles in orthodontics. This article presents a brief overview of nanotechnology, types of nanoparticles, biological safety of different nanoparticles used in orthodontics and their applications in the field of dentistry and orthodontics. KEY WORDS Nanoparticles, Biocompatibility, Orthodontics, Nanoscience


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1891
Author(s):  
Antonio Reina ◽  
Trung Dang-Bao ◽  
Itzel Guerrero-Ríos ◽  
Montserrat Gómez

Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogenous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.


2021 ◽  
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract Properly designed drilling fluid is a key element in achieving safe and effective drilling operations. Rheological parameters of drilling fluid determine the equivalent circulation density, the pump pressure, and hole cleaning efficiency. Also, they have a significant role in predicting the stability of drilling fluid under static and low shear rates. The chemical composition of the drilling fluid controls the rheological parameters. Recently, studies have shown that a small concentration of nanosized materials in the drilling fluid can substantially impact the rheological parameters of the drilling fluids. In this study, various nanoparticles (NPs) with different shapes, sizes, and surface charges were used to investigate their impact on the viscous properties of water-based drilling fluid. Bentonite and KCl water-based drilling fluids were used as the base fluids. NPs such as Iron oxide, Silica (SiO2), and multi-walled carbon nanotubes (MWCNT) were added to these base fluids. Also, surface functionalization of the NPs with polymer and functional groups such as -OH and -COOH groups was done to compare the effect of bare NPs with surface functionalized NPs. Hershel-Buckley model with dimensionless shear rates was used to calculate the low and high shear curvature exponents, surplus stress, and yield stress of the samples. Results indicate that NPs alter drilling fluid’s viscous properties based on their sizes, shapes, and surface charges. Moreover, the functionalization of NPs also modifies the properties based on the functional group attached to the NPs surface. This work shows that changing the size, shape, and surface charge of NPs has impact on viscous parameters, and NPs with different properties can fine-tune the fluid’s viscous properties based on the requirement for drilling fluid.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3562
Author(s):  
Luiz Gustavo de Almeida Chuffa ◽  
Fábio Rodrigues Ferreira Seiva ◽  
Adriana Alonso Novais ◽  
Vinícius Augusto Simão ◽  
Virna Margarita Martín Giménez ◽  
...  

The use of nanosized particles has emerged to facilitate selective applications in medicine. Drug-delivery systems represent novel opportunities to provide stricter, focused, and fine-tuned therapy, enhancing the therapeutic efficacy of chemical agents at the molecular level while reducing their toxic effects. Melatonin (N-acetyl-5-methoxytriptamine) is a small indoleamine secreted essentially by the pineal gland during darkness, but also produced by most cells in a non-circadian manner from which it is not released into the blood. Although the therapeutic promise of melatonin is indisputable, aspects regarding optimal dosage, biotransformation and metabolism, route and time of administration, and targeted therapy remain to be examined for proper treatment results. Recently, prolonged release of melatonin has shown greater efficacy and safety when combined with a nanostructured formulation. This review summarizes the role of melatonin incorporated into different nanocarriers (e.g., lipid-based vesicles, polymeric vesicles, non-ionic surfactant-based vesicles, charge carriers in graphene, electro spun nanofibers, silica-based carriers, metallic and non-metallic nanocomposites) as drug delivery system platforms or multilevel determinations in various in vivo and in vitro experimental conditions. Melatonin incorporated into nanosized materials exhibits superior effectiveness in multiple diseases and pathological processes than does free melatonin; thus, such information has functional significance for clinical intervention.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2440
Author(s):  
Octav Ginghină ◽  
Ariana Hudiță ◽  
Cătălin Zaharia ◽  
Aristidis Tsatsakis ◽  
Yaroslav Mezhuev ◽  
...  

Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.


Author(s):  
Roberto Castro-Muñoz ◽  
Angélica Cruz-Cruz ◽  
Yrenka Alfaro-Sommers ◽  
Luisa Ximena Aranda-Jarillo ◽  
Emilia Gontarek-Castro

Sign in / Sign up

Export Citation Format

Share Document