specific host
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 95)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jintae Park ◽  
Jinwoo Park ◽  
Jinhoon Lee ◽  
Chanoong Lim ◽  
Dong Woog Lee

AbstractThe quantification of supramolecular host–guest interactions is important for finely modulating supramolecular systems. Previously, most host–guest interactions quantified using force spectroscopic techniques have been reported in force units. However, accurately evaluating the adhesion energies of host–guest pairs remains challenging. Herein, using a surface forces apparatus, we directly quantify the interaction energies between cyclodextrin (CD)-modified surfaces and ditopic adamantane (DAd) molecules in water as a function of the DAd concentration and the CD cavity size. The adhesion energy of the β-CD–DAd complex drastically increased with increasing DAd concentration and reached saturation. Moreover, the molecular adhesion energy of a single host–guest inclusion complex was evaluated to be ~9.51 kBT. This approach has potential for quantifying fundamental information toward furthering the understanding of supramolecular chemistry and its applications, such as molecular actuators, underwater adhesives, and biosensors, which require precise tuning of specific host–guest interactions.


2021 ◽  
Vol 17 (3) ◽  
pp. 186-190
Author(s):  
Aqsa Jabeen ◽  
Muhammad Shoaib Sharif ◽  
Mursaleen Shahid ◽  
Shazima Samand

Olericulture crops are none woody leafy vegetables that contain high nutrients, vitamins, and iron. Foliage insects show chronological association with their specific host vegetable such as Mustard leaves beat root and kale were the main olericulture crops that were selected to estimate the prevalence and variety of foliage insects. Samples were collected by aerial nets, direct handpicking, and sweep nets and with the help of forceps. Larvae of the many insects were voracious eaters. Hymenoptera, Diptera, Lepidoptera, and Coleoptera were the major foliage insects order that directly or indirectly affect these vegetables. The result indicates that foliage insects show sequential association with their host vegetable. Maximum dominance and variety of insects were found in kale and the least abundance was recorded in Mustard leaves because mustard leaves secretes some toxins that repels the insects. Common insects among 3 of them were flea beetles.


Author(s):  
Hessel Peters-Sengers ◽  
Joe M. Butler ◽  
Fabrice Uhel ◽  
Marcus J. Schultz ◽  
Marc J. Bonten ◽  
...  

2021 ◽  
Vol 58 (4) ◽  
pp. 394-399
Author(s):  
C. Stiles ◽  
M. Bujanić ◽  
F. Martinković ◽  
I.-C. Šoštarić Zuckermann ◽  
D. Konjević

Summary A wild male mouflon (Ovis musimon) was shot due to the observed weakness. Necropsy revealed consolidated lungs and traces of black pigment and fibrin on the liver. On the cut surface, a juvenile fl uke was found in the lungs, while traces of destroyed fl ukes’ migratory channels were found in the liver. F. magna infection in both, wild and domestic ruminants, causes three types of species-specific host-parasite interactions; definitive, dead-end and aberrant. mouflon are classifi ed as aberrant hosts and here we report unsuccessful migration of a juvenile fl uke that led to a severe pneumonia.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Narendrakumar M. Chaudhari ◽  
Will A. Overholt ◽  
Perla Abigail Figueroa-Gonzalez ◽  
Martin Taubert ◽  
Till L. V. Bornemann ◽  
...  

Abstract Background The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. Results Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell–cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota). Conclusion Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3201
Author(s):  
Simon Peters ◽  
Ingo Fohmann ◽  
Thomas Rudel ◽  
Alexandra Schubert-Unkmeir

Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.


Author(s):  
Michael Koczerka ◽  
Pierre-Emmanuel Douarre ◽  
Florent Kempf ◽  
Sébastien Holbert ◽  
Michel-Yves Mistou ◽  
...  

The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1630
Author(s):  
Marla C. Glass ◽  
Justin M. Smith ◽  
Hans H. Cheng ◽  
Mary E. Delany

The avian α-herpesvirus known as Marek’s disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek’s disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of ‘MDV telomere-integrated only’, and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32–50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51–62 dpi) and establish metastatic lymphomas.


2021 ◽  
Author(s):  
Zhifen Cui ◽  
Cong Zeng ◽  
Furong Huang ◽  
Fuwen Yuan ◽  
Jingyue Yan ◽  
...  

The COVID-19 pandemic persists as a global health crisis for which curative treatment has been elusive. Development of effective and safe anti-SARS-CoV-2 therapies remains an urgent need. SARS-CoV-2 entry into cells requires specific host proteases including TMPRSS2 and Cathepsin L (Ctsl), but there has been no reported success in inhibiting host proteases for treatment of SARS-CoV-2 pathogenesis in vivo. Here we have developed a lung Ctsl mRNA-targeted, CRISPR/Cas13d-based nanoparticle therapy to curb fatal SARS-CoV-2 infection in a mouse model. We show that this nanotherapy can decrease lung Ctsl expression in normal mice efficiently, specifically, and safely. Importantly, this lung-selective Ctsl-targeted nanotherapy significantly extended the survival of lethally SARS-CoV-2 infected mice by decreasing lung virus burden, reducing expression of pro-inflammatory cytokines/chemokines, and diminishing the severity of pulmonary interstitial inflammation. Additional in vitro analyses demonstrated that Cas13d-mediated Ctsl knockdown inhibited infection mediated by the spike protein of SARS-CoV-1, SARS-CoV-2, and more importantly, the authentic SARS-CoV-2 B.1.617.2 Delta variant, regardless of TMPRSS2 expression status. Our results demonstrate the efficacy and safety of a lung-selective, Ctsl-targeted nanotherapy against infection by SARS-CoV-2 and likely other emerging coronaviruses, forming a basis for investigation of this approach in clinical trials.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4968
Author(s):  
Martina Barone ◽  
Monica Barone ◽  
Francesca Ricci ◽  
Giuseppe Auteri ◽  
Francesco Fabbri ◽  
...  

Polycythemia vera is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. However, no disease-specific risk factors have been identified so far. Circulating extracellular vesicles (EVs) are mostly of megakaryocyte (MK-EVs) and platelet (PLT-EVs) origin and, along with phosphatidylethanolamine (PE)-EVs, play a role in cancer and thrombosis. Interestingly, circulating microbial components/microbes have been recently indicated as potential modifiers of inflammation and coagulation. Here, we investigated phenotype and microbial DNA cargo of EVs after isolation from the plasma of 38 patients with polycythemia vera. Increased proportion of MK-EVs and reduced proportion of PLT-EVs identify patients with thrombosis history. Interestingly, EVs from patients with thrombosis history were depleted in Staphylococcus DNA but enriched in DNA from Actinobacteria members as well as Anaerococcus. In addition, patients with thrombosis history had also lower levels of lipopolysaccharide-associated EVs. In regard to fibrosis, along with increased proportion of PE-EVs, the EVs of patients with marrow fibrosis were enriched in DNA from Collinsella and Flavobacterium. Here, we identified a polycythemia-vera-specific host/microbial EV-based signature associated to thrombosis history and marrow fibrosis. These data may contribute to refining PV prognosis and to identifying novel druggable targets.


Sign in / Sign up

Export Citation Format

Share Document