strontium oxide
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 274 ◽  
pp. 125187
Author(s):  
Nibedita Nayak ◽  
Shaik Akbar Basha ◽  
Surya Kant Tripathi ◽  
Bijesh K. Biswal ◽  
Monalisa Mishra ◽  
...  

2021 ◽  
Author(s):  
NAZIRUL NAZRIN SHAHROL NIDZAM ◽  
Halimah Mohamed Mohamed Kamari ◽  
Muhammad Syaamil Mohd Sukari ◽  
Fatin Azira Mohamad Alauddin ◽  
Hasnimulyati Laoding ◽  
...  

Abstract In this research the melt quenching technique method was used to synthesize two series of borotellurite glass systems doped with manganese and strontium. Elastic measurement, X-Ray Diffraction and Fourier Transform Infrared spectroscopy were used to characterize the prepared glass samples. The increment of molar volume confirmed the theory that molar volume is inversely proportional to the density parameters. A broad hump appeared in XRD as the samples shown pure amorphous nature. In FTIR, the functional group vibrations of tellurite network were recorded such as TeO4 trigonal bipyramids and TeO3 trigonal pyramids by addition of both dopants. On the other hand, ultrasonic velocity was used to determine the elastic moduli of the glass such as bulk modulus, shear modulus, longitudinal modulus, Young’s Modulus, microhardness and Poisson’s ratio which showed decreasing and increasing trends with the increased concentration of MnO2 and SrO respectively.


Silicon ◽  
2021 ◽  
Author(s):  
Gomaa El Damrawi ◽  
Rawya Mohammed Ramadan ◽  
Mohamed El Baiomy

Author(s):  
Periasamy Anbu ◽  
Subash C. B. Gopinath ◽  
Midhat Nabil Salimi ◽  
Iswary Letchumanan ◽  
Sreeramanan Subramaniam

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3602
Author(s):  
Enrico Squizzato ◽  
Caterina Sanna ◽  
Antonella Glisenti ◽  
Paola Costamagna

In the present work, structural and catalytic characterization was performed on La0.6Sr0.4MnO3 (LSM) nanofibers. The LSM nanofibers were obtained using the electrospinning technique. For comparison, LSM powders with identical composition were characterized as well. The LSM powders were prepared through a self-combustion citrate-based procedure. SEM, EDX, XRD, and BET investigations were carried out on both LSM nanofibers and powders, pointing out the different structural features. The LSM nanofibers showed a higher surface area than the LSM powders and a lower presence of strontium oxide on the surface. Results of the H2-Temperature Programmed Reduction (TPR) tests showed evidence of a higher reactivity of the nanofibers compared to the powders. The catalytic characterization was performed utilizing a methane oxidation activity test, revealing a better catalytic performance of the LSM nanofibers: at 800 °C. The methane conversion achieved with the LSM nanofibers was 73%, which compared well with the 50% obtained with powders at 900 °C.


2021 ◽  
Author(s):  
Yiming Li

Hydroxyapatite (HA)-coated Ti6Al4V stems are currently used in total hip replacement (THR) surgeries. However, the residual stress in the HA coating due to mismatch in coefficient of thermal expansion (CTE) between HA and Ti6Al4V limits their application. Borate-based glasses can be promising alternatives to HA because of their similar CTEs to that of Ti6Al4V and excellent bioactivity that can promote bone repair. In this project, six borate-based glasses (Ly-B0, Ly-B1, Ly-B2, Ly-B3, Ly-B4, Ly-B5) from the B2O3-P2O5-CaO-Na2O-TiO2-SrO series were formulated by increasing the concentration of strontium oxide (SrO)from 0 to 25 in mol% at the expense of B2O3 in the glass series. Increased SrO content induced larger amounts of non-bridging oxygens and resulted in gradual increases in glass transition temperature (Tg). Discs of each glass powder were immersed in de-ionized water under 1, 7 and 30 days, and then the water extracts were used to determine the solubility and osteo-stimulatory effect of the glasses. Sr2+ doping retarded the dissolution rate of the glasses and the higher levels of Sr2+ doping (20 mol% and 25 mol%) promoted proliferation of osteoblasts. Except for Ly-B5 (containing 25 mol% SrO), discs of each glass powder exhibited bacteriostatic behavior against Staphylococcus aureus after 24 hours exposure. The glasses were enamelled onto Ti6Al4V substrates, and then bi-layer double cantilever beam (DCB) specimens were manufactured to measure the Mode I (GIC) and Mode II (GIIC) energy release rate of the glass coating/Ti6Al4V constructs. The mean GIC values increased from 6.56 ± 0.9 to 14.6 1 ± 2.1 J/m2 with increasing SrO content from Ly-B0 to Ly-B5, and the mean GIIC values increased from 36.07 ± 3.8 to 46.92 ± 3.3 J/m2 with increasing SrO content from Ly-B0 to Ly-B5, indicating that the incorporation of 15-25 mol% SrO significantly increased the fracture toughness of the construct. Moreover, the GIC and GIIC values of the coating/substrate system for all the six glasses significantly reduced (p ≤ 0.05) due to degradation in de-ionized water.


2021 ◽  
Author(s):  
Yiming Li

Hydroxyapatite (HA)-coated Ti6Al4V stems are currently used in total hip replacement (THR) surgeries. However, the residual stress in the HA coating due to mismatch in coefficient of thermal expansion (CTE) between HA and Ti6Al4V limits their application. Borate-based glasses can be promising alternatives to HA because of their similar CTEs to that of Ti6Al4V and excellent bioactivity that can promote bone repair. In this project, six borate-based glasses (Ly-B0, Ly-B1, Ly-B2, Ly-B3, Ly-B4, Ly-B5) from the B2O3-P2O5-CaO-Na2O-TiO2-SrO series were formulated by increasing the concentration of strontium oxide (SrO)from 0 to 25 in mol% at the expense of B2O3 in the glass series. Increased SrO content induced larger amounts of non-bridging oxygens and resulted in gradual increases in glass transition temperature (Tg). Discs of each glass powder were immersed in de-ionized water under 1, 7 and 30 days, and then the water extracts were used to determine the solubility and osteo-stimulatory effect of the glasses. Sr2+ doping retarded the dissolution rate of the glasses and the higher levels of Sr2+ doping (20 mol% and 25 mol%) promoted proliferation of osteoblasts. Except for Ly-B5 (containing 25 mol% SrO), discs of each glass powder exhibited bacteriostatic behavior against Staphylococcus aureus after 24 hours exposure. The glasses were enamelled onto Ti6Al4V substrates, and then bi-layer double cantilever beam (DCB) specimens were manufactured to measure the Mode I (GIC) and Mode II (GIIC) energy release rate of the glass coating/Ti6Al4V constructs. The mean GIC values increased from 6.56 ± 0.9 to 14.6 1 ± 2.1 J/m2 with increasing SrO content from Ly-B0 to Ly-B5, and the mean GIIC values increased from 36.07 ± 3.8 to 46.92 ± 3.3 J/m2 with increasing SrO content from Ly-B0 to Ly-B5, indicating that the incorporation of 15-25 mol% SrO significantly increased the fracture toughness of the construct. Moreover, the GIC and GIIC values of the coating/substrate system for all the six glasses significantly reduced (p ≤ 0.05) due to degradation in de-ionized water.


Sign in / Sign up

Export Citation Format

Share Document