h3k4 trimethylation
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 26)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Kortany M Baker ◽  
Smriti Hoda ◽  
Debasmita Saha ◽  
Livia Georgescu ◽  
Nina D Serratore ◽  
...  

Candida glabrata is an opportunistic pathogen that has developed the ability to adapt and thrive under azole treated conditions. The common mechanisms that can result in Candida drug resistance are due to mutations or overexpression of the drug efflux pump or the target of azole drugs, Cdr1 and Erg11, respectively. However, the role of epigenetic histone modifications in azole-induced gene expression and drug resistance are poorly understood in C. glabrata. In this study, we show for the first time that Set1 mediates histone H3K4 mono-, di-, and trimethylation in C. glabrata. In addition, loss of SET1 and histone H3K4 methylation results in increased susceptibility to azole drugs in both C. glabrata and S. cerevisiae. Intriguingly, this increase in susceptibility to azole drugs in strains lacking Set1-mediated histone H3K4 methylation is not due to altered transcript levels of CDR1, PDR1 or Cdr1s ability to efflux drugs. Genome-wide transcript analysis revealed that Set1 is necessary for azole-induced expression of 12 genes involved in the late biosynthesis of ergosterol including ERG11 and ERG3. Importantly, chromatin immunoprecipitation analysis showed that histone H3K4 trimethylation was detected on chromatin of actively transcribed ERG genes. Furthermore, H3K4 trimethylation increased upon azole-induced gene expression which was also found to be dependent on the catalytic activity of Set1. Altogether, our findings show that Set1-mediated histone H3K4 methylation governs the intrinsic drug resistant status in C. glabrata via epigenetic control of azole-induced ERG gene expression.


Author(s):  
Zhiwen Fan ◽  
Ming Kong ◽  
Xiulian Miao ◽  
Yan Guo ◽  
Haozhen Ren ◽  
...  

Liver regeneration is characterized by cell cycle reentrance of hepatocytes. N-Myc, encoded by MYCN, is a member of the Myc family of transcription factors. Elevation of MYCN expression has been noted in the course of liver regeneration whereas the underlying mechanism remains unclear. Here we describe that up-regulation of MYCN expression, as measured by quantitative PCR, Western blotting, and immunohistochemical staining, paralleled liver regeneration in animal and cell models. MYCN expression was up-regulated as a result of transcriptional activation. Ingenuity pathway analysis (IPA) revealed several up-stream transcriptional regulators for MYCN and RNA interference validated E2F5 and TFDP1 as essential for hepatocyte growth factor (HGF)-induced MYCN trans-activation. Further examination showed that deficiency of BRG1, a chromatin remodeling protein, attenuated MYCN induction during liver regeneration. BRG1 interacted with and was recruited by E2F5/TFDP1 to the MYCN promoter. Mechanistically, BRG1 might play a role regulating histone H3 acetylation and H3K4 trimethylation and facilitating/stabilizing the binding of RNA polymerase II surrounding the MYCN promoter. Over-expression of ectopic MYCN in BRG1-null hepatocytes overcame deficiency of proliferation. Importantly, a positive correlation between MYCN expression and BRG1/E2F5/TFDP1 expression was observed in human liver specimens. In conclusion, our data identify a novel epigenetic pathway where an E2F5-TFDP1-BRG1 complex regulates MYCN transcription to promote liver regeneration.


2021 ◽  
Author(s):  
Stephanie A. Campbell ◽  
Jocelyn Bégin ◽  
Cassandra L. McDonald ◽  
Ben Vanderkruk ◽  
Tabea L. Stephan ◽  
...  

During pancreas development, endocrine progenitors differentiate into the islet-cell subtypes, which undergo further functional maturation in postnatal islet development. In islet b-cells, genes involved in glucose-stimulated insulin secretion are activated and glucose exposure increases the insulin response as b-cells mature. Here, we investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component <i>Dpy30</i> in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets and the mice displayed elevated non-fasting and fasting glycemia, as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA-sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature b-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.


Diabetes ◽  
2021 ◽  
pp. db201214
Author(s):  
Stephanie A. Campbell ◽  
Jocelyn Bégin ◽  
Cassandra L. McDonald ◽  
Ben Vanderkruk ◽  
Tabea L. Stephan ◽  
...  

2021 ◽  
Author(s):  
Jun Miao ◽  
Chengqi Wang ◽  
Amuza Lucky ◽  
Xiaoying Liang ◽  
Hui Min ◽  
...  

AbstractThe histone acetyltransferase GCN5-associated SAGA complex is evolutionarily conserved from yeast to human and functions as a general transcription co-activator in global gene regulation. In this study, we identified a divergent GCN5 complex in Plasmodium falciparum, which contains two plant homeodomain (PHD) proteins (PfPHD1 and PfPHD2) and a plant apetela2 (AP2)-domain transcription factor (PfAP2-LT). To dissect the functions of the PfGCN5 complex, we generated parasites with the bromodomain deletion in PfGCN5 and the PHD domain deletion in PfPHD1. The two deletion mutants closely phenocopied each other, exhibiting significantly reduced merozoite invasion of erythrocytes and elevated sexual conversion. These domain deletions caused dramatic decreases not only in histone H3K9 acetylation but also in H3K4 trimethylation, indicating synergistic crosstalk between the two euchromatin marks. Domain deletion in either PfGCN5 or PfPHD1 profoundly disturbed the global transcription pattern, causing altered expression of more than 60% of the genes. At the schizont stage, these domain deletions were linked to specific downregulation of merozoite genes involved in erythrocyte invasion, many of which harbor the DNA-binding motifs for AP2-LT and/or AP2-I, suggesting targeted recruitment of the PfGCN5 complex to the invasion genes by these specific transcription factors. Conversely, at the ring stage, PfGCN5 or PfPHD1 domain deletions disrupted the mutually exclusive expression pattern of the entire var gene family, which encodes the virulent factor PfEMP1. Correlation analysis between the chromatin state and alteration of gene expression demonstrated that up- and down-regulated genes in these mutants are highly correlated with the silenct and active chromatin states in the wild-type parasite, respectively. Collectively, the PfGCN5 complex represents a novel HAT complex with a unique subunit composition including the AP2 transcription factor, which signifies a new paradigm for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.Author SummaryEpigenetic regulation of gene expression plays essential roles in orchestrating the general and parasite-specific cellular pathways in the malaria parasite Plasmodium falciparum. Using tandem affinity purification and proteomic characterization, we identified a divergent transcription co-activator – the histone acetyltransferase GCN5-associated complex in P. falciparum, which contains nine core components, including two PHD domain proteins (PfPHD1 and PfPHD2) and a plant apetela2-domain transcription factor. To understand the functions of the PfGCN5 complex, we performed gene disruption in two subunits of this complex, PfGCN5 and PfPHD1. We found that the two deletion mutants displayed very similar growth phenotypes, including significantly reduced merozoite invasion rates and elevated sexual conversion. These two mutants were associated with dramatic decreases in histone H3K9 acetylation and H3K4 trimethylation, which led to global changes in chromatin states and gene expression. Genes significantly affected by the PfGCN5 and PfPHD1 gene disruption include those participating in parasite-specific pathways such as invasion, virulence, and sexual development. In conclusion, this study presents a new model of the PfGCN5 complex for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Giuseppe Zardo

CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.


Planta ◽  
2021 ◽  
Vol 253 (1) ◽  
Author(s):  
Maryam Foroozani ◽  
Matthew P. Vandal ◽  
Aaron P. Smith

2020 ◽  
Author(s):  
Stephanie A. Campbell ◽  
Jocelyn Bégin ◽  
Cassandra L. McDonald ◽  
Ben Vanderkruk ◽  
Tabea L. Stephan ◽  
...  

SummaryDuring pancreas development, endocrine progenitors differentiate into the islet-cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated and glucose exposure increases the insulin response as β-cells mature. Here, we investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets and the mice displayed elevated random and fasting glycemia, as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA-sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.


Author(s):  
Amit Kumar ◽  
Kirtikumar R Kondhare ◽  
Nilam N Malankar ◽  
Anjan K Banerjee

Abstract Polycomb repressive complex (PRC) group proteins regulate various developmental processes in plants by repressing target genes via H3K27 trimethylation, and they function antagonistically with H3K4 trimethylation mediated by Trithorax group proteins. Tuberization in potato has been widely studied, but the role of histone modifications in this process is unknown. Recently, we showed that overexpression of StMSI1, a PRC2 member, alters the expression of tuberization genes in potato. As MSI1 lacks histone-modification activity, we hypothesized that this altered expression could be caused by another PRC2 member, StE(z)2, a potential H3K27 methyltransferase in potato. Here, we demonstrate that a short-day photoperiod influences StE(z)2 expression in the leaves and stolons. StE(z)2 overexpression alters plant architecture and reduces tuber yield, whereas its knockdown enhances yield. ChIP-sequencing using stolons induced by short-days indicated that several genes related to tuberization and phytohormones, such as StBEL5/11/29, StSWEET11B, StGA2OX1, and StPIN1 carry H3K4me3 or H3K27me3 marks and/or are StE(z)2 targets. Interestingly, we observed that another important tuberization gene, StSP6A, is targeted by StE(z)2 in leaves and that it has increased deposition of H3K27me3 under long-day (non-induced) conditions compared to short days. Overall, our results show that StE(z)2 and deposition of H3K27me3 and/or H3K4me3 marks might regulate the expression of key tuberization genes in potato.


Sign in / Sign up

Export Citation Format

Share Document