and topology
Recently Published Documents


TOTAL DOCUMENTS

3150
(FIVE YEARS 634)

H-INDEX

89
(FIVE YEARS 15)

Author(s):  
Hyo-Jung Kim ◽  
Bae-Seon Park ◽  
Chang-Kyung Ryoo ◽  
Hak-Tae Lee
Keyword(s):  

Author(s):  
Wei Huang ◽  
Chongcong Tao ◽  
Hongli Ji ◽  
Jinhao Qiu

Acoustic Black Hole (ABH) plate structure has shown promising potentials of vibration suppression above a cut on frequency. For energy dissipation below the cut on frequency, however, the ABH is less effective due to the absence of wave focusing effect. This work reports a simultaneous optimization of ABH plates for broadband energy dissipation. Two sets of design variables of ABH plates, that is, geometry of the profile and topology of the damping layer, are optimized in an alternatively nested procedure. A novel objective function, namely the upper limit of kinetic energy, is proposed. Modeling of ABH structures is implemented and dynamic characteristic is solved using finite element method. A rectangular plate embedded with two ABH indentations is presented as a numerical example. Influence of frequency ranges in the calculation and mass ratios of the damping layer on results are discussed. The achieved optimal arrangement of the damping layer is found to cover equally, if not more, above the non-ABH (uniform) part of the plate than the ABH area. This is inconsistent with the conventional believe that damping layers should cover as much of the ABH area as possible. Mechanism of the broadband energy dissipation by the optimal solution is demonstrated.


2022 ◽  
Vol 933 ◽  
Author(s):  
Fan Kiat Chan ◽  
Yashraj Bhosale ◽  
Tejaswin Parthasarathy ◽  
Mattia Gazzola

Recent studies on viscous streaming flows in two dimensions have elucidated the impact of body curvature variations on resulting flow topology and dynamics, with opportunities for microfluidic applications. Following that, we present here a three-dimensional characterization of streaming flows as functions of changes in body geometry and topology, starting from the well-known case of a sphere to progressively arrive at toroidal shapes. We leverage direct numerical simulations and dynamical systems theory to systematically analyse the reorganization of streaming flows into a dynamically rich set of regimes, the origins of which are explained using bifurcation theory.


Author(s):  
Rafał Bielas ◽  
Paulina Maksym ◽  
Karol Erfurt ◽  
Barbara Hachuła ◽  
Robert Gawecki ◽  
...  

AbstractStar-shaped glycopolymers due to the attractive combination of the physicochemical, morphological, self-assembly properties along with biological activity have gained increased attention as innovative agents in novel cancer therapies. Unfortunately, the production of these highly desirable biomaterials remains a challenge in modern macromolecular chemistry. The main reason for that is the low polymerizability of ionic glycomonomers originated from their steric congestion and the occurrence of ionic interactions that generally negatively influence the polymerization progress and hinder controllable reaction pathway. In this work, the new ionic sugar monomer was (co)polymerized for the first time via Activator Generated by Electron Transfer Atom Transfer Radical Polymerization (AGET ATRP) using a three-arm resveratrol-based core to obtain star-like (co)polymers. The obtained products were examined in terms of their physicochemical properties and morphology. Aside from the synthesis of these new glycopolymers, also a thorough description of their thermal properties, ability to self-assembly, the formation of stable superstructures was studied in detail. It was found that examined (co)polymers did not show any heterogeneities and phase separation, while their variation of glass transition temperature (Tg) was strictly related to the change in the number of glycomonomer. Also, the stability and shapes of formed superstructures strictly depend on their composition and topology. Finally, we have shown that synthesized carbohydrate-based polymers revealed high antiproliferative activity against several cancer cell lines (i.e., breast, colon, glioma, and lung cancer). The cytotoxic activity was particularly observed for star-shaped polymers that were systematically enhanced with the growing concentration of amine moieties and molecular weight. The results presented herein suggest that synthesized star-shaped glyco(co)polymers are promising as drug or gene carriers in anticancer therapies or anti-tumor agents, depending on their cytotoxicity. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document