mode excitation
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 69)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Perez-Salinas ◽  
Allan S. Johnson ◽  
Dharmalingam Prabhakaran ◽  
Simon Wall

AbstractSpontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.


Author(s):  
Xianfei Chen ◽  
Gregory S. Nusinovich ◽  
Olgierd Dumbrajs ◽  
Houxiu Xiao ◽  
Xiaotao Han ◽  
...  

Author(s):  
Mingxing Li ◽  
Yueke Wang ◽  
Mengjia Lu ◽  
Tian Sang

Abstract In this letter, a method to realize the topological rainbow trapping is presented, which is composed of gradual ordinary-topological-ordinary heterostructures based on two-dimensional photonic crystals with C-4 symmetry. In the proposed sandwiched structure, the two coupled topological edge states with different frequencies are separated and trapped in different positions, due to group velocity of near to zero. We have achieved the dual-mode of topological rainbow in one structure, which broadens the bandwidth. Besides, the dual-mode of topological rainbow under one mode excitation is also realized by using a simple bend design. The immunity to defects is also investigated and it is found our slowing light system has strong robustness. Finite Element Method simulation results verify our idea, and our work opens up a new way for frequency routing and broadband operation of topological photonic states.


2021 ◽  
Author(s):  
Lu Peng ◽  
Nicolas Riesen ◽  
Jiawen Li ◽  
Mengke Han ◽  
Linh Nguyen ◽  
...  

2021 ◽  
Author(s):  
Yun Lin ◽  
Shuo Shen ◽  
Xiang Gao ◽  
Liancheng Wang

Sign in / Sign up

Export Citation Format

Share Document