interspecies electron transfer
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 90)

H-INDEX

36
(FIVE YEARS 9)

2021 ◽  
Vol 12 ◽  
Author(s):  
Monir Mollaei ◽  
Maria Suarez-Diez ◽  
Vicente T. Sedano-Nunez ◽  
Sjef Boeren ◽  
Alfons J. M. Stams ◽  
...  

We established a syntrophic coculture of Syntrophobacter fumaroxidans MPOBT (SF) and Geobacter sulfurreducens PCAT (GS) growing on propionate and Fe(III). Neither of the bacteria was capable of growth on propionate and Fe(III) in pure culture. Propionate degradation by SF provides acetate, hydrogen, and/or formate that can be used as electron donors by GS with Fe(III) citrate as electron acceptor. Proteomic analyses of the SF-GS coculture revealed propionate conversion via the methylmalonyl-CoA (MMC) pathway by SF. The possibility of interspecies electron transfer (IET) via direct (DIET) and/or hydrogen/formate transfer (HFIT) was investigated by comparing the differential abundance of associated proteins in SF-GS coculture against (i) SF coculture with Methanospirillum hungatei (SF-MH), which relies on HFIT, (ii) GS pure culture growing on acetate, formate, hydrogen as propionate products, and Fe(III). We noted some evidence for DIET in the SF-GS coculture, i.e., GS in the coculture showed significantly lower abundance of uptake hydrogenase (43-fold) and formate dehydrogenase (45-fold) and significantly higher abundance of proteins related to acetate metabolism (i.e., GltA; 62-fold) compared to GS pure culture. Moreover, SF in the SF-GS coculture showed significantly lower abundance of IET-related formate dehydrogenases, Fdh3 (51-fold) and Fdh5 (29-fold), and the rate of propionate conversion in SF-GS was 8-fold lower than in the SF-MH coculture. In contrast, compared to GS pure culture, we found lower abundance of pilus-associated cytochrome OmcS (2-fold) and piliA (5-fold) in the SF-GS coculture that is suggested to be necessary for DIET. Furthermore, neither visible aggregates formed in the SF-GS coculture, nor the pili-E of SF (suggested as e-pili) were detected. These findings suggest that the IET mechanism is complex in the SF-GS coculture and can be mediated by several mechanisms rather than one discrete pathway. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.


2021 ◽  
Vol 11 (21) ◽  
pp. 10163
Author(s):  
Filippo Fazzino ◽  
Emilia Paone ◽  
Altea Pedullà ◽  
Francesco Mauriello ◽  
Paolo S. Calabrò

Several anchovies species are captured all over the world; they are consumed fresh but also preserved by the industry, either by brine-fermentation or canning in oil. The industrial process generates large amounts of residue (about 50% of the original fish biomass) that is generally used to produce fish flour. In this paper, the advancement of a recently proposed process for the full valorisation of anchovies aimed at the extraction of fish oil (to be used as an omega-3 source) and at the production of biomethane through anaerobic digestion is presented. Particularly, in the experiments presented, a co-digestion of anchovy sludge—used as a nitrogen supplement—and market waste (5% and 95% on a Total Solids basis) was performed. Since the proposed extraction process uses, as a green-solvent, d-limonene, the well-known problems of toxicity for the anaerobic biomass must be overcome during the digestion process. As discussed below, the granular activated carbon (GAC) is used to reclaim and improve anaerobic digestion processes in a reactor displaying clear signs of inhibition. In fact, GAC demonstrates multiple benefits for anaerobic digestion, such as adsorption of toxic substances, biomass selection, and triggering of direct interspecies electron transfer (DIET).


mBio ◽  
2021 ◽  
Author(s):  
Dawn E. Holmes ◽  
Jinjie Zhou ◽  
Toshiyuki Ueki ◽  
Trevor Woodard ◽  
Derek R. Lovley

The conversion of organic matter to methane plays an important role in the global carbon cycle and is an effective strategy for converting wastes to a useful biofuel. The reduction of carbon dioxide to methane accounts for approximately a third of the methane produced in anaerobic soils and sediments as well as waste digesters.


Sign in / Sign up

Export Citation Format

Share Document