upper troposphere
Recently Published Documents


TOTAL DOCUMENTS

1734
(FIVE YEARS 325)

H-INDEX

82
(FIVE YEARS 7)

2022 ◽  
Vol 92 (1) ◽  
pp. 32-49
Author(s):  
Jonathan Ledesma ◽  
Cecilia E. Del Papa ◽  
Patricio Payrola

Abstract The Puna–Altiplano Plateau of the Central Andes is the second-highest plateau in the world (after Tibet), with a mean elevation of 4000 m.a.s.l. and an arid to hyperarid climate. Uplift of the Puna–Altiplano Plateau has affected lower-level atmospheric circulation, acting as a barrier to humid easterly winds from the Amazon basin and favoring an across-strike precipitation gradient resulting in a humid climate towards the east of the plateau and an arid to hyperarid climate in the orogen's interior. In the modern climate, the Bolivian High anticyclone regulates upper troposphere circulation, but little is known about the high-altitude tropospheric circulation of the past. This work focuses on the eolian record of the San Antonio de los Cobres basin along the eastern border of the Puna Plateau, NW Argentina, with the aim of analyzing its origin and thus elucidating the late Miocene winds. The eolian deposits are constrained by 7.8 Ma (K/Ar and U/Pb) and 6.4 Ma (U/Pb) ignimbrites at the nearly basal and upper contacts, respectively. Based on stratigraphic, sedimentological, and provenance analysis of the eolian units, we have identified three main facies associations (FAs): FA1) cross-stratified sandstones with large- to small-scale tabular, planar cross-bedding and with trough cross-stratification; FA2) sandstones with planar to low-angle stratification associated with thinly laminated ripple sandstone strata; FA3) medium- to coarse-grained massive sandstones associated with pebbly to bouldery, matrix-supported conglomerates and clast-supported conglomerates. The lateral and vertical facies assemblages indicate a dune field confined to topographic depressions dominated by transverse dunes with straight and sinuous crestlines that laterally grade into sandsheets associated with ephemeral streams. Paleoflows, lithotypes, and grain-size determinations indicate a persistent north-northwest provenance and wind velocities of 24–38 km/h (with maximum velocities of 55–75 km/h). The results of our analysis coupled with data from previous studies indicates that, for at least the last ca. 8 Myr, the winds have been blowing constantly from the north-northwest with an intensity similar to the present. This implies that the paleo-atmospheric circulation had a similar pattern to the present-day one. Therefore, we conclude that the upper-troposphere circulation in the Puna Plateau of NW Argentina was already regulated by the Bolivian High anticyclone during the Miocene, generating constant north-northwesterly winds.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 503-514
Author(s):  
R. SURESH

The total ozone derived from TOVS data from NOAA 12 satellite through one step physical retrieval algorithm of  International TOVS Processing Package (ITPP) version 5.0 has been used to identify  its diurnal, monthly, latitudinal and longitudinal variability during 1998 over the domain Equator to 26° N / 60-100° E. The linkage of  maximum total ozone with warmer tropopause and lower stratosphere has been re-established. The colder upper tropospheric temperature which is normally associated with maximum ozone concentration throughout the year elsewhere in the world  has also been identified in this study but the relationship gets reversed during southwest  monsoon months(June-September) over the domain considered. The moisture  available in abundance in the lower troposphere gets precipitated due to the convective instability prevailing in the atmosphere during monsoon season and very little moisture is only available for vertical transport into the upper troposphere atop 500 hPa. The latent heat released by the  precipitation processes warms up the middle and upper atmosphere. The warm and dry upper troposphere could be the reason for less depletion of ozone in the upper troposphere during monsoonal  months and this is supported by the positive correlation coefficient prevailing in monsoon season between  total ozone and upper tropospheric (aloft 300 hPa) temperature. The warmness in middle and upper troposphere which is associated with less depletion and/or production of more  ozone in the upper troposphere may  perhaps contribute  for the  higher total ozone during monsoon months than in other seasons over peninsular Indian region.  The minimum concentration is observed during January (226 DU) over 6° N and the maximum (283DU) over 18° N during August. Longitudinal variability is less pronounced than the latitudinal variability.


MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 727-732
Author(s):  
R. SURESH ◽  
Y. E. A. RAJ

The Tiros Operational Vertical Sounder (TOVS) is a popular satellite sounding system. In this paper certain features of Indian northeast monsoon have been studied with the help of three years of TOVS data received through the satellite ground station located at the Regional Meteorological Centre, Chennai. The TOVS based latitudinal and longitudinal profiles of Outgoing Longwave Radiation (OLR) and Precipitable Water Vapour (PWV) were derived for various phases of northeast monsoon activity, over coastal and interior Tamilnadu and oceanic regions. These were consistent with the known spatial rainfall characteristics of northeast monsoon. The average vertical temperature profiles derived for the various phases of northeast monsoon for the different regions revealed that the lowest layer and upper troposphere are warmer and mid troposphere colder during active northeast monsoon compared to dry phase. The diurnal variation of OLR and PWV and the comparability of TOVS derived data with conventional upper air data and INSAT data have been briefly discussed.


MAUSAM ◽  
2022 ◽  
Vol 45 (2) ◽  
pp. 155-160
Author(s):  
P. C. JOSHI ◽  
B. SIMON

Th e NOAA· scries of pol ar urbiting meteorological JalellitC"J cany cnboent an instrumentTOYSOlROS Operational Vertical Sounder). The temperature profile da la from thi! instrument over Pakistan beatlow region and Tibetan pla teau region i5 examined in relatio n to the onset of sout h~ mnruoon OWf Kent. coast.A si,nificanl temperatu re increase in upper troposphere nead y rv.u ·~u in a.1V11ncfO of onset of monsoonh.. been observed.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Dan Chen ◽  
Tianjiao Zhou ◽  
Dong Guo ◽  
Shuhao Ge

This study used the FLEXPART-WRF trajectory model to perform forward and backward simulations of a cut-off low (COL) event over northeast Asia. The analysis reveals the detailed trajectories and sources of air masses within the COL. Their trajectories illustrate the multi-timescale deep intrusion processes in the upper troposphere and lower stratosphere (UTLS) caused by the COL. The processes of air intrusion from the lower stratosphere to the middle troposphere can be divided into three stages: a slow descent stage, a rapid intrusion stage and a relatively slow intrusion stage. A source analysis of targeted air masses at 300 hPa and 500 hPa shows that the ozone-rich air in the COL primarily originated from an extratropical cyclone over central Siberia and from the extratropical jet stream. The sources of air masses in different parts of the COL show some differences. These results can help explain the ozone distribution characteristics in the main body of a COL at 300 hPa and at 500 hPa that were revealed in a previous study.


MAUSAM ◽  
2021 ◽  
Vol 65 (4) ◽  
pp. 591-602
Author(s):  
B. GEETHA ◽  
S. BALACHANDRAN

Easterly wave characteristics over southern peninsular India during the northeast monsoon season of 2010 are examined by means of synergetic analysis involving synoptic, statistical and numerical methods. NCEP        6-hourly reanalysis datasets of zonal and meridional winds, vertical velocity, temperature and net long wave radiation at 2.5° × 2.5° grid resolution for the period 20th October to 31st  December, 2010 form the main database for the analysis.  During this period, 3 easterly waves could be identified to have passed over this region and the time period of these waves are determined to be 4.2 days (4.5 days) by statistical methods (synoptic methods). The speed of movement, wavelength and amplitude of the waves are determined to be 7.28 ms-1, 2800 km and 6.7 ms-1 respectively. While rising motion is observed at most of the tropospheric levels over and behind the trough, subsidence occurs ahead of the trough. Divergence is noted over and behind the trough at upper troposphere while convergence occurs in the lower to mid-troposphere. Concomitantly warming is noted ahead of the trough while colder anomalies are noted in the lower levels over and behind the trough. 


2021 ◽  
Author(s):  
Dimitris Akritidis ◽  
Andrea Pozzer ◽  
Johannes Flemming ◽  
Antje Inness ◽  
Philippe Nédélec ◽  
...  

Abstract. Tropopause folds are the key process underlying stratosphere-to-troposphere transport (STT) of ozone, thus, affecting tropospheric ozone levels and variability. In the present study we perform a process-oriented evaluation of Copernicus Atmosphere Monitoring Service (CAMS) reanalysis (CAMSRA) O3 during folding events, over Europe and for the time period from 2003 to 2018. A 3-D labeling algorithm is applied to detect tropopause folds in CAMSRA, while ozonesonde data from WOUDC (World Ozone and Ultraviolet Radiation Data Centre) and aircraft measurements from IAGOS (In-service Aircraft for a Global Observing System) are used for CAMSRA O3 evaluation. The profiles of observed and CAMSRA O3 concentrations indicate that CAMSRA reproduces the observed O3 increases in the troposphere during the examined folding events. Nevertheless, at some of the examined sites, CAMSRA overestimates the observed O3 concentrations, mostly at the upper portion of the observed increases, with a median fractional gross error (FGE) among the examined sites > 0.2 above 400 hPa. The use of a control run without data assimilation, reveals that the aforementioned overestimation of CAMSRA O3 arises from the data assimilation implementation. Overall, although data assimilation assists CAMSRA O3 to follow the observed O3 enhancements in the troposphere during the STT events, it introduces biases in the upper troposphere resulting in no clear quantitative improvement compared to the control run without data assimilation. Less biased assimilated O3 products, with finer vertical resolution in the troposphere, in addition to higher IFS (Integrated Forecasting System) vertical resolution, are expected to provide a better representation of O3 variability during tropopause folds.


2021 ◽  
Author(s):  
Clara M. Nussbaumer ◽  
Andrea Pozzer ◽  
Ivan Tadic ◽  
Lenard Röder ◽  
Florian Obersteiner ◽  
...  

Abstract. The COVID-19 (Coronavirus disease 2019) European lockdowns have lead to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx ≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPR) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN campaigns in 2003 and 2004, the HOOVER campaigns in 2006 and 2007 and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5/MESSy Atmospheric Chemistry model which allows for scenario calculations with business as usual emissions during the BLUESKY campaign, referred to as "no-lockdown scenario". We show that the COVID-19 lockdown reduced NO and NO2 mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O3 production and loss terms reflected this reduction with a deceleration in O3 cycling due to reduced mixing ratios of NOx while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (αCH3O2) to show that the COVID-19 lockdown shifted the chemistry in the upper troposphere/tropopause region to a NOx limited regime during BLUESKY. In comparison, we find a VOC limited regime to be dominant during UTOPIHAN.


2021 ◽  
Vol 14 (12) ◽  
pp. 7959-7974
Author(s):  
Paolo Pettinari ◽  
Flavio Barbara ◽  
Simone Ceccherini ◽  
Bianca Maria Dinelli ◽  
Marco Gai ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measured the middle-infrared limb emission spectrum of the atmosphere from 2002 to 2012 on board ENVISAT, a polar-orbiting satellite. Recently, the European Space Agency (ESA) completed the final reprocessing of MIPAS measurements, using version 8 of the level 1 and level 2 processors, which include more accurate models, processing strategies, and auxiliary data. The list of retrieved gases has been extended, and it now includes a number of new species with weak emission features in the MIPAS spectral range. The new retrieved trace species include carbonyl chloride (COCl2), also called phosgene. Due to its toxicity, its use has been reduced over the years; however, it is still used by chemical industries for several applications. Besides its direct injection in the troposphere, stratospheric phosgene is mainly produced from the photolysis of CCl4, a molecule present in the atmosphere because of human activity. Since phosgene has a long stratospheric lifetime, it must be carefully monitored as it is involved in the ozone destruction cycles, especially over the winter polar regions. In this paper we exploit the ESA MIPAS version 8 data in order to discuss the phosgene distribution, variability, and trends in the middle and lower stratosphere and in the upper troposphere. The zonal averages show that phosgene volume mixing ratio is larger in the stratosphere, with a peak of 40 pptv (parts per trillion by volume) between 50 and 30 hPa at equatorial latitudes, while at middle and polar latitudes it varies from 10 to 25 pptv. A moderate seasonal variability is observed in polar regions, mostly between 80 and 50 hPa. The comparison of MIPAS–ENVISAT COCl2 v8 profiles with the ones retrieved from MIPAS balloon and ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) measurements highlights a negative bias of about 2 pptv, mainly in polar and mid-latitude regions. Part of this bias is attributed to the fact that the ESA level 2 v8 processor uses an updated spectroscopic database. For the trend computation, a fixed pressure grid is used to interpolate the phosgene profiles, and, for each pressure level, VMR (volume mixing ratio) monthly averages are computed in pre-defined 10∘ wide latitude bins. Then, for each latitudinal bin and pressure level, a regression model has been fitted to the resulting time series in order to derive the atmospheric trends. We find that the phosgene trends are different in the two hemispheres. The analysis shows that the stratosphere of the Northern Hemisphere is characterized by a negative trend of about −7 pptv per decade, while in the Southern Hemisphere phosgene mixing ratios increase with a rate of the order of +4 pptv per decade. This behavior resembles the stratospheric trend of CCl4, which is the main stratospheric source of COCl2. In the upper troposphere a positive trend is found in both hemispheres.


Sign in / Sign up

Export Citation Format

Share Document