filter design
Recently Published Documents


TOTAL DOCUMENTS

6098
(FIVE YEARS 893)

H-INDEX

87
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Nelson Kingsley Joel Peter Thiagarajan ◽  
Vijeyakumar K N ◽  
Saravanakumar S

Abstract Approximate computing is a modern techniques for design of low power efficient arithmetic circuits for portable error resilient applications. In this work, we have proposed a Adaptive Parallel Mid-Point Filter (APMPF) architecture using proposed imprecise Max-Min Estimator (MME)targeting digital image processing. Parallel architecture for the MME can trade-off hardware at the expense of accuracy are proposed and used in the proposed APMPF. In APMPF, we use three level of sorting to estimate the mid-point of 3 x 3 window. Switching based trimmed filter is proposed for precise estimation of the selected window. Experimental Results interms of Area, Power and Delay with 90nm ASIC technology exposed that to the least, Proposed filters demonstrate 7% and 9% Area Delay Product (ADP) and Power Delay Product (PDP) reductions, respectively, compared to precise filter design.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 133
Author(s):  
Nien-Che Yang ◽  
Danish Mehmood

Harmonic distortion in power systems is a significant problem, and it is thus necessary to mitigate critical harmonics. This study proposes an optimal method for designing passive power filters (PPFs) to suppress these harmonics. The design of a PPF involves multi-objective optimization. A multi-objective bee swarm optimization (MOBSO) with Pareto optimality is implemented, and an external archive is used to store the non-dominated solutions obtained. The minimum Manhattan distance strategy was used to select the most balanced solution in the Pareto solution set. A series of case studies are presented to demonstrate the efficiency and superiority of the proposed method. Therefore, the proposed method has a very promising future not only in filter design but also in solving other multi-objective optimization problems.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012002
Author(s):  
A A Chichirov ◽  
A A Filimonova ◽  
N D Chichirova ◽  
O E Babikov

Abstract The problem of water treatment at thermal power plants using ion-exchange technologies is a multi-parameter task. Mathematical modeling is essential for research and optimization of ion exchange technology. The analysis of hydrodynamic processes during the operation of ion-exchange filters was carried out according to the developed mathematical model. Also, a physicochemical analysis of the composition of the water treatment plant solutions under real conditions was carried out. It is shown that in the cationite and anionite filters, the flow movement occurs mainly in a mixed hydrodynamic mode. This mode of regeneration and the filter design do not allow achieving the minimum consumption of the reagent for regeneration, the minimum volume of wastewater and the maximum output of demineralized water. The mixed mode of the anion exchange filter operation allows division of the outgoing solution flow into fractions, which can be successfully used in the TPP water cycle.


2022 ◽  
Vol 412 ◽  
pp. 126593
Author(s):  
Shifang Dai ◽  
Lijuan Zha ◽  
Jinliang Liu ◽  
Xiangpeng Xie ◽  
Engang Tian

2021 ◽  
Vol 12 (1) ◽  
pp. 374
Author(s):  
Wenfang Zhao ◽  
Xiaowu Tang ◽  
Keyi Li ◽  
Jiaxin Liang ◽  
Weikang Lin ◽  
...  

Characteristic pore-opening size O95 or O90 has been widely used in the filter design of woven geotextiles. These manufactured products have different pore size proportions of large pore diameters, medium pore diameters, and small pore diameters, respectively. Therefore, uncertainties still exist regarding the prediction of geotextile pore diameter variations under the uniaxial tensile strain. This paper investigates the variations in five characteristic pore-opening sizes O95, O80, O50, O30, and O10, with uniaxial tensile strain by using the image analysis method. The large pore diameters, medium pore diameters, and small pore diameters show different variation behaviors as the uniaxial tensile strain increases. Fifteen specific pores are selected and then their pore diameter variations are monitored under each tensile strain of 1%. The colorful pore size distribution diagram is a visual way to identify the variation of pores arranged in the tension direction (warp direction) and the direction perpendicular to tensile loads (weft direction). The various pore diameters are proved to agree well with the bell-shaped Gaussian distribution. The results exhibit an accurate prediction of the variation in large pore sizes, medium pore sizes, and small pore sizes, respectively, for all tested woven geotextiles with uniaxial tensile strain.


2021 ◽  
Vol 23 (1) ◽  
pp. 393
Author(s):  
Sebastjan Kralj ◽  
Marko Jukič ◽  
Urban Bren

Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein–protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.


Author(s):  
G. G. Gilaev ◽  
◽  
M. Ya. Khabibullin ◽  
R. N. Bakhtizin ◽  
◽  
...  

The analysis of theoretical solutions and experimental data given in numerous literatures to justify the choice of the ratio of the size of gravel in relation to the size of formation sand showed that with the development of experimental methods and the accumulation of laboratory and field data, this ratio tends to decrease. When installing filters in an open hole, pressure losses at the interface between gravel and the formation play a significant role, and it should be noted that the greatest productivity and efficiency of the filter in an open hole is achieved when there is a packing around it, which can be created by crushing the sandy massif of the formation by cyclical changes debit. When choosing a filter design, along with the ability to provide them with a reliable hydraulic connection in the reservoir-filter system, the main task is also solved - to prevent sand flow into the well. The study of the conditions for the removal of sand particles through the flow sections in perforated, mesh and slotted filters during their operation both in homogeneous and in sands of different size, made it possible to recommend empirical dependences for determining the size of the holes. Keywords: porous medium; coarse fraction; sand; particle; well.


Author(s):  
Siyang Zhao ◽  
Jinyong Yu

This article investigates the dynamic event-triggered fault detection filter (FDF) design problem for linear continuous-time networked systems, considering the fading channels phenomenon and randomly occurring faults. A dynamic event-triggered mechanism (ETM) is introduced to reduce the network bandwidth occupation more efficiently by utilizing an internal variable which can enlarge the event-triggered intervals. Besides, the Zeno phenomenon is eliminated fundamentally by ensuring that the event-triggered intervals are positive lower bounded. After that, sufficient conditions are derived to guarantee the stochastic stability of the residual system with a desired [Formula: see text] performance and the co-design criterion of the FDF and the dynamic ETM is developed. Finally, an unmanned surface vehicle (USV) system is used to illustrate the applicability of the presented approach.


Sign in / Sign up

Export Citation Format

Share Document