passive restoration
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 47)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Miguel Ibañez-Álvarez ◽  
Pol Farràs Santasusana ◽  
Juan Antonio Calleja ◽  
Carlos Rouco ◽  
Matthew Brolly ◽  
...  

Invasive rodents have a detrimental impact on terrestrial ecosystem functioning, this is often exacerbated on small islands. Rat eradication campaigns are often used to deal with this environmental perturbation given their classification as invasive species. Studies assessing the effects of rodent control at ecosystem scale are scarce and thus little is known about the subsequent functional response of vegetation subsequent to rat control. In this work, we use remote sensing to assess the effects of black rat (Rattus rattus) eradication on Mediterranean vegetation productivity in the Sa Dragonera Islet, Mallorca (Spain). Rats feed on seeds, sprouts, and leaves of woody vegetation and hence we expect primary production to increase nine years after the rodenticide campaign. The Break Detection approach for additive season and trend (BFAST method) was adopted to examine changes in vegetation density before and after the eradication campaign in Sa Dragonera Islet (Balearic Islands), using a temporal series of monthly NDVI data extracted from Landsat imagery. The same temporal trends were examined for a control zone where no rat eradication took place, in order to control for weather-driven changes. The results of this study revealed changes across the 21-year monthly NDVI time series. However, the dates, magnitude, and trend of these changes could not be explicitly attributed to the action of rats, when compared to the historical changes on the islet and the changes found to co-occur within the control zone. These finding could, perhaps, be explained by the high resilience of Mediterranean shrubs to browsing including that of rat invasion. However, the results from the study appear to show that rat damage on specific plant species, with little contribution to global NDVI values, would be overshadowed by the effects of broader environmental factors in this remote sensing approach. The results suggest that the current passive restoration scheme imposed following eradication is not sufficient for effective ecosystem restoration.


2021 ◽  
Vol 264 ◽  
pp. 109387
Author(s):  
William Dröse ◽  
Luciana R. Podgaiski ◽  
Martin M. Gossner ◽  
Sebastian T. Meyer ◽  
Julia-Maria Hermann ◽  
...  

2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Eduardo Alanís-Rodríguez ◽  
Víctor M. Molina-Guerra ◽  
Alejandro Collantes-Chávez-Costa ◽  
Enrique Buendía-Rodríguez ◽  
Arturo Mora-Olivo ◽  
...  

Abstract Background Ecological restoration is a process that helps the recovery of an ecosystem that has been degraded, damaged or destroyed. The success of restoration actions depend on the understanding of the processes, mechanisms and factors that guide vegetation dynamics. The restoration of plant communities can be made by unassisted (passive restoration, where the community recover by itself) and assisted (active restoration) ecological succession. It is imperative to know the scope of both types of activities to guide future restoration actions by evaluating the properties and functioning of the intervened communities. Methods Variance analysis of the carbon (C) stocks, basal area, canopy area, Shannon–Weaver index values, specific richness and abundance of three Tamaulipan thornscrub communities (assisted natural succession area, unassisted natural succession area and control area) was performed. Furthermore, a similarity analysis between the sampling areas using the floristic composition (abundance) was performed. Results In total, 11 families, 17 genera and 20 species of vascular plants were registered. The richness of species and abundance ranked as follows per area: assisted ecological natural succession > control > unassisted ecological natural succession. The species composition between sampling areas showed a low number of common species between plant communities. Conclusions The values of species richness, diversity, abundance, basal area, and canopy area of the assisted natural succession vegetal community was statistical similar to the control plan community. The values of C stocks showed that assisted ecological succession could recover not only structure and composition attributes but also this key ecosystem property.


Ecosystems ◽  
2021 ◽  
Author(s):  
Klaus Kremer ◽  
Álvaro Promis ◽  
Jürgen Bauhus

AbstractRestoration of natural forests previously replaced by plantations is a widespread challenge for forestry in Chile and elsewhere. However, there is little documented evidence for successful restoration, either through active or passive approaches. In this study, we aimed at (1) determining the potential for passive restoration in first-rotation Pinus radiata plantations through natural regeneration of native tree species and (2) identifying drivers of this advance regeneration. Across different regions in south-central Chile, we established nearly 260 plots to assess regeneration and environmental conditions along 26 transects running from plantations into adjacent natural forests. The regeneration was exclusively composed by native species, except for 7 individuals of P. radiata. Mean density and diversity of seedlings were significantly higher in natural forests than in plantations, but this was not the case for sapling density, and no differences in sapling diversity were supported. Additionally, significant differences in regeneration composition between plantations and natural forests were found only at two of the eight study sites. Compared to climatic and soil chemical variables, which varied mostly at regional scales, local environmental conditions showed little influence on regeneration, possibly due to the structural homogeneity of plantations. Yet, the significantly higher basal area, litter thickness and gap fraction of plantations compared to natural forests suggest that these factors may explain differences at the seedling stage. Our study indicates that the use of appropriate harvesting methods that maintain advance regeneration may facilitate the transition from plantations to native forests through passive restoration. The use this approach should be further investigated through analyzing regeneration’s response to different forms of plantation harvesting.


2021 ◽  
Vol 23 (1) ◽  
pp. e969
Author(s):  
Sergio Esteban Lozano-Baez ◽  
José Ignacio Barrera-Cataño ◽  
Ricardo Ribeiro Rodrigues ◽  
Yamileth Domínguez-Haydar ◽  
Paula Meli

Technical reclamation and spontaneous succession (passive restoration) are the two main approaches for restoring post-mining sites worldwide. Despite substantial differences between both approaches, little is known regarding how they differ in terms of ecological outcomes. We assessed and compared the vegetation structure and composition in one spontaneous succession forest that is 29 years old, two technically reclaimed forests that are 2 and 10 years old after alluvial gold mining, and one old-growth reference forest in northeastern Antioquia, Colombia. We sampled trees and saplings establishing three Modified-Whittaker Plots in each site. We measured tree basal area, canopy cover, vegetation height, tree density, and species richness. Vegetation structure and composition differed considerably among restoration approaches. Species richness was significantly greater in the spontaneous succession forest than at the other sites. Similarly, technical reclamation significantly increased the vegetation attributes after 10 years, reaching values similar to the reference forest. We underscore the importance of fast-growth planted species (Acacia mangium, Samanea saman, and Schizolobium parahyba) to revegetate mining degraded lands.


2021 ◽  
Author(s):  
Nathan Lamb ◽  
Kayri Havens ◽  
Jalen Holloway ◽  
James F. Steffen ◽  
Jacob Zeldin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document