membrane stretch
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 17)

H-INDEX

28
(FIVE YEARS 2)

Author(s):  
Ziyi Wang ◽  
Jiyuan Chen ◽  
Aleksandra Babicheva ◽  
Pritesh P. Jain ◽  
Marisela Rodriguez ◽  
...  

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared to normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, while downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Frank S Choveau ◽  
Ismail Ben Soussia ◽  
Delphine Bichet ◽  
Chatelain C. Franck ◽  
Sylvain Feliciangeli ◽  
...  

Inhibitory potassium channels of the TREK1/TRAAK family are integrators of multiple stimuli, including temperature, membrane stretch, polyunsaturated fatty acids and pH. How these signals affect the gating of these channels is the subject of intense research. We have previously identified a cytoplasmic domain, pCt, which plays a major role in controlling channel activity. Here, we use pharmacology to show that the effects of pCt, arachidonic acid, and extracellular pH converge to the same gate within the channel. Using a state-dependent inhibitor, fluoxetine, as well as natural and synthetic openers, we provide further evidence that the “up” and “down” conformations identified by crystallography do not correspond to open and closed states of these channels.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1389
Author(s):  
Solène Barbeau ◽  
Guillaume Gilbert ◽  
Guillaume Cardouat ◽  
Isabelle Baudrimont ◽  
Véronique Freund-Michel ◽  
...  

A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i) which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+. Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels (SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general, SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert physical forces into biological signals and hence into a cell response. Consequently, SAC play a major role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for a better management of PH.


2021 ◽  
Author(s):  
Alper D. Ozkan ◽  
Tina Gettas ◽  
Audrey Sogata ◽  
Wynn Phaychanpheng ◽  
Miou Zhou ◽  
...  

G-protein coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity, and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically-encoded fluorescent reporter of GPR68 activation we call "iGlow". iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments, or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved Helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.


2021 ◽  
Vol 118 (32) ◽  
pp. e2108967118
Author(s):  
Ximena López ◽  
Nicolás Palacios-Prado ◽  
Juan Güiza ◽  
Rosalba Escamilla ◽  
Paola Fernández ◽  
...  

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation—measured by changes in DAPI uptake rate—was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.


Author(s):  
Monika Lakk ◽  
David Križaj

Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor outflow from the anterior chamber of the eye. In response to chronic IOP elevations, TM compensates for mechanical stress through increased actin polymerization, tissue stiffness and contractility. This process has been associated with open angle glaucoma, however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood.We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase RhoA, and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin and zyxin were time-dependently inhibited by ROCK inhibitor Y-27632, and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.


2021 ◽  
Author(s):  
Thieu X Phan ◽  
Hoai T Ton ◽  
Hajnalka Gulyas ◽  
Robert Porszasz ◽  
Attila Toth ◽  
...  

Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly, reaching a plateau in minutes. In the heart and skeletal muscle, however, myogenic tone is rapid; activation occurs in tens of seconds and arterial constrictions or raised extravascular pressure as brief as 100 ms remove tone. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and the adipose. Here, we reveal a critical role for TRPV1 in the myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo , increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these effects of TRPV1 antagonists were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells, or raised intravascular pressure in arteries (with or without endothelium), triggered Ca2+ signaling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the rapid vasodilation following brief constriction of arterioles was also dependent on TRPV1, consistent with a rapid deactivation or inactivation of TRPV1. Pharmacologic experiments revealed that membrane stretch activates a phospholipase C/protein kinase C signaling pathway to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle.


2021 ◽  
Author(s):  
Clement Verkest ◽  
Irina Schaefer ◽  
Juri M. Jegelka ◽  
Timo A. Nees ◽  
Wang Na ◽  
...  

AbstractA central question in mechanobiology is how mechanical forces acting in or on a cell are transmitted to mechanically-gated PIEZO channels that convert these forces into biochemical signals. Here we show that PIEZO2 is sensitive to force-transmission via the membrane (force-from-lipids) as well as force transmission via the cytoskeleton (force-from-filament) and demonstrate that the latter requires the intracellular linker between the transmembrane helices nine and ten (IDR5). Moreover, we show that rendering PIEZO2 insensitive to force-from-filament by deleting IDR5 abolishes PIEZO2-mediated inhibition of neurite outgrowth, which relies on the detection of cellgenerated traction forces, while it only partially affects its sensitivity to cell indentation and does not at all alter its sensitivity to membrane stretch. Hence, we propose that PIEZO2 is a polymodal mechanosensor that detects different types of mechanical stimuli via different force transmission pathways, which highlights the importance of utilizing multiple complementary assays when investigating PIEZO channel function.


2021 ◽  
Author(s):  
Kenjiro Yoshimura ◽  
Kazuko Iida ◽  
Hidetoshi Iida

Abstract Mechanosensitive (MS) ion channels respond to mechanical stress and convert it to electric and ionic signals that activate appropriate cellular mechanisms. Although the force-sensing mechanisms of MS channels remain obscure, the following have been proposed: activation by force from membrane lipids and activation by force delivered from associated proteins. Five MS channel families have been identified to date in plants, including the Arabidopsis thaliana Mid1-Complementing Activity (MCA) channel; however, their activation mechanisms have not yet been elucidated in detail. We herein demonstrated that the MCA2 channel is a Ca2+-permeable mechanosensitive channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposome membranes. Ca2+ fluorometry demonstrated that liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediated Ca2+ influx. The patch-clamp technique revealed that the application of pressure to the membrane reconstituted with MCA2(1-173) elicited channel currents. This channel was also activated by voltage. Blockers for mechanosensitive channels inhibited stretch, but not voltage, activation. Since MCA proteins are found exclusively in plants, these results suggest that MCA represents a plant-type MS channel that opens directly with membrane stretch.


Author(s):  
Robert L. Lowe ◽  
Christopher G. Cooley

Abstract This paper investigates the nonlinear dynamics of square dielectric elastomer membranes under time-dependent, through-thickness compressive loading. The dielectric elastomer is modeled as an isotropic ideal dielectric, with mechanical stiffening at large strains captured using the Gent hyperelastic constitutive model. The equation of motion for the in-plane membrane stretch is derived using Hamilton’s principle. The static response of the membrane is first investigated, with equilibrium stretches calculated numerically for a wide range of compressive pre-loads and applied voltages. Snap-through instabilities are observed, with the critical snap-through voltage decreasing with increasing compressive pre-load. The dynamic response of the membrane is then investigated under forced harmonic excitation. Frequency response plots characterizing the steady-state vibration reveal primary, subharmonic, and superharmonic resonances. Near these resonances, two stable vibration states are possible, corresponding to upper and lower branches in the frequency response. Significant and practically meaningful differences in the dynamic response are observed when the system vibrates at a fixed frequency about the upper and lower branches, a feature not discussed in previous research.


Sign in / Sign up

Export Citation Format

Share Document