cake layer
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 72)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Wajeeha Bibi ◽  
Muhammad Asif ◽  
Jawad Rabbi

VMD is one of the desalination technologies used for drinking water purification because of it higher permeate flux and lower energy consumption, and it uses low grade energy for operation. However, there are some critical problems related to VMD, one of which is membrane fouling. In the present study, the fouling phenomenon in VMD is investigated using constant pressure-blocking filtration laws. The results of constant pressure-blocking filtration law indicated that the permeate flux was initially unaffected by the cake layer, but with the passage of time as the pores began to constrict, a formation of a relatively thick cake layer was observed, which resulted in the decrease of permeate flux.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Bin Liu ◽  
Meng Wang ◽  
Kaihan Yang ◽  
Guangchao Li ◽  
Zhou Shi

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Calen R. Raulerson ◽  
Sudeep C. Popat ◽  
Scott M. Husson

This paper reports on the use of forward osmosis (FO) with polyelectrolyte draw solutions to recover water from bioreactor mixed liquors. The work was motivated by the need for new regenerative water purification technologies to enable long-duration space missions. Osmotic membrane bioreactors may be an option for water and nutrient recovery in space if they can attain high water flux and reverse solute flux selectivity (RSFS), which quantifies the mass of permeated water per mass of draw solute that has diffused from the draw solution into a bioreactor. Water flux was measured in a direct flow system using wastewater from a municipal wastewater treatment plant and draw solutions prepared with two polyelectrolytes at different concentrations. The direct flow tests displayed a high initial flux (>10 L/m2/h) that decreased rapidly as solids accumulated on the feed side of the membrane. A test with deionized water as the feed revealed a small mass of polyelectrolyte crossover from the draw solution to the feed, yielding an RSFS of 80. Crossflow filtration experiments demonstrated that steady state flux above 2 L/m2·h could be maintained for 70 h following an initial flux decline due to the formation of a foulant cake layer. This study established that FO could be feasible for regenerative water purification from bioreactors. By utilizing a polyelectrolyte draw solute with high RSFS, we expect to overcome the need for draw solute replenishment. This would be a major step towards sustainable operation in long-duration space missions.


Author(s):  
Osama Siddig ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny

AbstractTreatment of the filter cake layer after drilling is essential for better cement integrity and to retain the original reservoir permeability. Compared to water-based filter cake, oil-based mud filter cake removal is more sophisticated as oil encloses the filter cake’s particles. Therefore, oil-based mud clean-up requires wettability alteration additives (mutual solvents and/or surfactants) for permitting acid/filter cake reaction. With an appropriate acid, microemulsions were reported to be very efficient in cleaning oil-based filter cakes, due to their low interfacial tension and high acid solubility. The objective of this paper is to provide an overview of the different techniques and treatment solutions utilized in oil-based filter cake clean-up. Furthermore, a synopsis of the various treatments for drilling fluids densified with different weighting materials is presented. Subsequently, the research limitations and opportunities have been highlighted for future work. In the light of the review that has been presented in this paper, it's recommended to conduct further investigation on some areas related to filter cake removal. The removal of filter cake formed from weighting materials other than barite, calcium carbonate, ilmenite, and manganese tetroxide needs to be investigated thoroughly. Additionally, the overall efficiency of oil-based mud removal needs to be studied under wide ranges of temperature, salinity, and pH. The utilization of surfactant-free microemulsions in filter cake treatment could also be investigated.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 945
Author(s):  
Weiwei Huang ◽  
Weiguang Lv ◽  
Huaqiang Chu ◽  
Weiwei Lv ◽  
Wenzong Zhou ◽  
...  

Combined microalgal and membrane filtration could effectively treat aquaculture wastewater; however, the membrane fouling induced by extracellular organic matter (EOM) during the dewatering process is an issue. This study investigated diatomite dynamic membrane (DDM) fouling behaviour during the dewatering of Chlorella pyrenoidosa under the influence of copper ions. The results indicate that copper ion heavy metals in aquaculture wastewater significantly affected purification and algae dewatering by DDM. Aquaculture wastewater with a high copper concentration (1 and 0.5 mg/L) could induce serious DDM fluxes and cake layer filtration resistance (Rc), whereas fewer filtration fluxes were induced when aquaculture wastewater had a low copper concentration, particularly that of 0.1 mg/L, at which the Rc was lowest and the concentration effect was highest. Macromolecular organics of EOM, such as biopolymers, polysaccharides, and proteins, were responsible for DDM fouling and accumulated mostly in the slime layer, whereas only a small amount of them accumulated in the diatomite layer. The DDM rejected more protein-like organics of EOM in the slime layer when dewatering algae at low copper concentrations (<0.1 mg/L); however, when using the DDM to dewater algae at high copper concentrations, more polysaccharides of EOM were rejected (0.5 < Cu2+ < 5 mg/L). This result has significant ramifications for aquaculture wastewater treatment as well as algae separation and concentration by the DDM.


2021 ◽  
Vol 10 (1) ◽  
pp. 84-92
Author(s):  
Chinh Pham Duc ◽  
Thuy Nguyen Thi Thu ◽  
Tham Bui Thi ◽  
Quang Phan Ngoc ◽  
Cuong Pham Manh ◽  
...  

The photocatalytic reaction using TiO2 suspended to degrade the residues of toxic organic compounds has been extensively studied, but the ultilization of this process has not been recorded on an industrial scale. One of the primary reasons is the separation of TiO2 catalyst from the treated solution mixture. Conventional mechanical separation methods such as centrifugation, flocculation-deposition do not allow for thorough separation and catalytic reuse, whereas the microfiltration / ultrafiltration membrane process has been demonstrated to be capable of composting isolates very suspended particles. Accordingly, in this study, an experimental system separating TiO2-P25 suspension by microfiltration membrane 0.2 µm on laboratory scale was set up. Effects of operating factors: TiO2 concentration, pH value, transmembrane pressure and crosss flow velocity were investigated. Result shown that TiO2 concentration greater than 1 g / l will fundamentally diminish the permeate flux, futhermore, in the transmembrane  pressure differential (∆P) fluctuating from 0.3 to 1.2 bar, the relationship between J and ∆P is a linear relationship. In addition, the study likewise shown that the formation of the cake layer (scale) on the membrane surface is the fundamental driver of the permeate flux degradation over time. These results are the basis for integrating membrane and photocatalytic processes into a complete system for degradation toxic organic compound residues.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 875
Author(s):  
Nur Izzati Zaenuddin ◽  
Muhammad Roil Bilad ◽  
Lisendra Marbelia ◽  
Wiratni Budhijanto ◽  
Nasrul Arahman ◽  
...  

Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63–98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.


Author(s):  
Lanxin Ren ◽  
Chen Liu ◽  
Ting Meng ◽  
Yingxue Sun

Abstract This study investigated the efficacy of using micro-flocculation as a pretreatment approach in alleviating ultrafiltration (UF) membrane fouling caused by organic matters in treated wastewater. Three typical model dissolved organic matters (DOM), humic acid, fulvic acid, and sodium alginate, were employed to simulate membrane fouling. The results showed that micro-flocculation using poly aluminum chloride (PAC) or polymerized ferric sulfate (PFS) as flocculant could effectively enhance the treatment performance of UF process on DOM. With 6 mg/L PAC, the removal efficiency of humic acid, fulvic acid, and sodium alginate by micro-flocculation combined UF process reached 79.95%, 63.25%, and 51.14%, respectively. Specifically, after micro-flocculation, micromolecular hydrophilic organic matter (e.g., fulvic acid) tended to form a compact cake layer. The macromolecular hydrophobic organic matter (e.g., humic acid) and macromolecular hydrophilic organic matter (e.g., sodium alginate) generally led to a loose cake layer. At PAC dosage of 6 mg/L, the membrane specific flux (J/J0) at the end was improved by 11.71%, 10.27%, and 2.2% for humic acid, sodium alginate and fulvic acid solutions, respectively, compared with UF process alone. It could be inferred that micro-flocculation pretreatment can effectively mitigate the membrane fouling when treating wastewater containing humic acid, sodium alginate, or fulvic acid.


Sign in / Sign up

Export Citation Format

Share Document